
A FINITE ELEMENT LIKE SCHEME FOR INTEGRO-PARTIAL
DIFFERENTIAL HAMILTON-JACOBI-BELLMAN EQUATIONS

FABIO CAMILLI AND ESPEN R. JAKOBSEN

Abstract. We construct a finite element like scheme for fully non-linear integro-partial differ-
ential equations arising in optimal control of jump-processes. Special cases of these equations
include optimal portfolio and option pricing equations in Finance. The schemes are monotone
and robust. We prove that they converge in very general situations, including degenerate equa-
tions, multiple dimensions, relatively low regularity of the data, and for most (if not all) types of
jump-models used in Finance. In all cases we provide (probably optimal) error bounds. These
bounds apply when grids are unstructured and integral terms are very singular, two features
that are new or highly unusual in this setting.

1. Introduction

In this paper we introduce and analyze finite element (FEM) like schemes for nonlocal Hamilton-
Jacobi-Bellman equations (HJB equations) of the form

sup
v∈V

{
− tr [a(x, v)D2u]− b(x, v)Du+ c(x, v)u− f(x, v)− Ivu(x)

}
= 0 in RN ,(1.1)

or

sup
v∈V

{
− tr [a(x, v)D2u]− b(x, v)Du+ c(x, v)u− f(x, v)− J vu(x)

}
= 0 in RN ,(1.2)

where

a(x, v) =
1
2
σ(x, v)σT (x, v),(1.3)

Ivu(x) =
∫

E

[u(x+ η(x, v, z))− u(x)]ν(dz),(1.4)

J vu(x) =
∫

E

[u(x+ η(x, v, z))− u(x)− 1|z|<1η(x, v, z)Du(x)]ν(dz),(1.5)

V is a compact metric space and E = RM \ {0}. The coefficients σ, η, b, c, f are loosely speaking
Lipschitz continuous in x, continuous in v, and Borel measurable in z. The precise assumptions
will be given in the next section. These equations are the dynamic programming equations for
stochastic control problems involving Levy processes, a class of Markov processes with jumps [11].
The two forms of the equation correspond to different intensities ν(dz) of small jumps in the
corresponding Levy processes. In general these equations are degenerate and fully-nonlinear, and
the corresponding solutions are typically only Hölder continuous and have to be understood in the
viscosity sense [25, 29, 4].

Equations like (1.1) and (1.2) appear in advanced models of financial markets where price evo-
lution of stocks (and other risky assets) are modeled as (exponential) pure-jump or jump-diffusion
processes. Special cases of (1.1) and (1.2) include linear equations used in option pricing problems,
obstacle problems used e.g. in pricing of American options, and fully non-linear equations (the
full HJB equation) used in optimal portfolio problems. We refer to [19] for the first two cases and
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to [25, 8] for the last case. It is well-known that the standard Black-Scholes model (a diffusion
model) give poor fit to real markets, at least on smaller time scales. E.g. log-returns distributions
of stock prices are leptokurtic and have longer and fatter tails than predicted by the Black-Scholes
model, see e.g. [19]. To improve upon these shortcomings, many pure-jump and jump-diffusion
models have been suggested in the literature over the years, see e.g. [19, 40] for the most popular
models. The empirical fact that Levy processes with discontinuous sample paths tend to better
model e.g. stock prices, is one main reason for the renewed interest in stochastic optimal control
of jump-diffusion processes.

Except in very simple cases equations (1.1) and (1.2) do not have closed form solutions, so
numerical methods are needed to obtain (approximate) solutions. In this paper we construct FEM
like schemes. Since the equations are fully nonlinear we have no weak/variational formulation,
and the usual FEM approach does not work. If the measure ν is finite and the corresponding HJB
equation is (1.1), we discretize in two steps. First we obtain a semi-discrete equation (“discrete in
time”) as the dynamic programming equation of a discrete time control problem approximating
the underlying continuous time control problems of (1.1):

uh(x) = inf
v∈V

{
hf(x, v) + e−hc(x,v)

[e−hλ

2d

d∑
m=1

(
uh(x+ hb(x, v) +

√
hσm(x, v))+(1.6)

+ uh(x+ hb(x, v)−
√
hσm(x, v)

)
+

1− e−hλ

λ

∫
E

uh(x+ η(x, v, z))ν(dz)
]}
,

where σm is the m-th column of the matrix σ, h is the discretization step and λ is the mass of
the measure. The next step is obtain a fully discrete equation by introducing a regular triangu-
lation and look for continuous piecewise linear functions over the chosen triangulation satisfying
the semi-discrete equation at every vertex of the triangulation. When ν is not finite we first ap-
proximate it by a finite measure 1r<|z|<Rν(dz) (truncation), and then approximate the truncated
equation following the above approach. To improve the truncation approximation, we also add
small diffusion and/or drift terms to the equation.

We prove that these methods converge and derive (probably optimal) error bounds using the
framework developed in [30] and ideas from [17]. We also discuss issues like restricting to a
bounded domain, truncating long jumps, and approximating integrals by quadrature. In all cases
we provide rigorous error bounds for the various approximations. What remains to do in a com-
puter implementation, is the resolution of the non-linearity. There are various ways to do that,
e.g. policy iteration, value iteration, artificial time methods (stationary limits), and so on. We
will not address this point in this paper.

FEM schemes like the one we have described above are usually called semi-Lagrangian or
control schemes in the literature. They are (usually) monotone and first order accurate, and a
comprehensive background and references can be found in [24]. Most results in this field con-
cerns deterministic control problems and first order HJB equations without integral terms. Semi-
Lagrangian schemes for second order HJB equations with no integral terms have been considered
in [37, 17, 5, 1]. Moreover in [16] such schemes were derived for HJB equations associated to
piecewise deterministic processes (compound Poisson processes with drift). One advantage of this
type of schemes is that in general they produce also an approximation of the optimal control law
in feedback form and the optimal trajectories (this is a key point in the study of a control prob-
lem). This advantage can also be shared by some (monotone, low order) finite difference schemes
following the construction of Kushner, and we refer to [34] for a discussion of this point. An other
advantage is that these schemes are formulated on general grids/triangulations just like FEMs.
By contrast this is very cumbersome to achieve with finite difference methods. A third advantage
is that the semi-Lagrangian scheme automatically handles non-diagonally dominant diffusion ma-
trices a. Such matrices appear in applications and are cumbersome to discretize, we refer to [12]
for a finite difference (FDM) approach to this problem.

The construction and analysis of numerical schemes for linear integro-partial differential equa-
tions arising as pricing equations in financial markets of jump-diffusion type is currently an active
field of research, see e.g. [19, 36, 23, 15] and references therein. By contrast, there are few works on
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numerical schemes for fully nonlinear degenerate integro-partial differential equations. We men-
tion the discussion about jump-diffusion processes in [34] and the papers [22, 14, 30, 10]. In all
cases mainly monotone FDMs are considered and convergence is obtained. In the last two papers
the main focus is on convergence rates. The framework of [30] is again based on ideas of Krylov,
Barles and Jakobsen [31, 32, 5] in the pure PDE case. We emphasize that the error bounds of this
paper apply when grids are unstructured and integral terms are very singular, a feature which is
new or highly unusual in this setting.

The rest of this paper is organized as follows. In section 2 we state the assumptions on the data
and give well-posedness/regularity results for equations (1.1) and (1.2). We discuss truncation of
the Levy measure and reduction to a bounded domain and give error bounds. In section 3 we
construct the schemes via the dynamic programming equation (a semi-discretization) and FEM
ideas. We prove existence, uniqueness, consistency, and partial error bounds. We also derive a
fully discrete scheme of FEM type by piecewise linear reconstruction on a (regular) triangulation
of the domain. In section 4 we derive error bounds for the semi-discrete scheme with or without
truncation of the Levy measure. Finally in the appendix, we prove the main technical result of
this paper, a regularity and continuous dependence result for the semi-discrete scheme.

Notation: By USCb(RN ) and Cb(RN ) we mean the spaces of bounded continuous and upper
semicontinuous functions. We will use the following norms

|f |0 = ess supx∈RN |f(x)|, [f ]1 = |Df |0, and |f |1 = |f |0 + [f ]1.

2. Preliminaries

In this section we state the assumptions for equations (1.1) and (1.2) and give well-posedness
results. We discuss reduction to a bounded domain and reduction to bounded measure ν with
compact support.

2.1. Assumptions, well-posedness, regularity. We will use the following assumptions:
(A1) The set V is a compact metric space, the coefficients σ, η, b, c, f are continuous in x and v

and Borel measurable in z, and ν is a positive Radon measure on E := RM \ {0}.

(A2) There exists L1, L2, ` ≥ 0 such that for any v ∈ V and z ∈ E

|c(·, v)|1 + |f(·, v)|1 ≤ L1,

|σ(·, v)|1 + |b(·, v)|1 ≤ L2

|η(·, v, z)|1 ≤ L2(|z|1|z|<1 + e`|z|1|z|>1).

(A3) There exists c0 > 0 such that, for all x ∈ RN and v ∈ V ,

c(x, v) ≥ c0.

(A4) There exists L3 ≥ 0, such that for ` defined in (A2), any v ∈ V and x ∈ RN ,

|Dzη(x, v, ·)|0 ≤ L3e
`|z|.

For the measure ν we will use the following integrability assumptions.
(B1)k The measure ν satisfies for ` defined in (A2) and some k ∈ {0, 1, 2},∫

E

(|z|k1|z|<1 + e`|z|1|z|>1) ν(dz) <∞.

(B2) The measure ν has a positive density m : E → [0,∞) such that ν(dz) = m(z)dz and for
some C, ε > 0, and n ∈ N

|Dkm(z)| ≤ Cke
−(`+ε)|z| for k = 0, 1, . . . , n,

where Dkm is the vector of all order k derivatives of m and ` is defined in (A2).
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(B3) The measure ν has a positive density m : E → [0,∞) such that ν(dz) = m(z)dz and for
some α ∈ [0, 2), C0, C1, and ε > 0,

|Dkm(z)| ≤ Ck

( 1
|z|N+α+k

1|z|<1 + e−(`+ε)|z|1|z|>1

)
for k = 0, 1,

where D0m = m, D1m = Dm the gradient of m, and ` is defined in (A2).
Assumptions (A1) – (A3) and (B1)2 are standard from a stochastic control theory point of view,

as they insure existence and uniqueness of strong solutions of the underlying stochastic differential
equations, see [26]. Under assumption (B1)2 or the less general assumption (B1)1 the measure
ν may have a (non-integrable) singularity at z = 0. If (B1)1 or (B1)0 holds the HJB equation
takes the form (1.1). If (B1)2 holds but not (B1)1, then (1.2) gives the correct form of the HJB
equation. In this case, the extra term in the integrand of J v (compared to Iv) is needed for the
integral to converge: If (B1)2 holds, then J vu converge for all C2 functions u is with polynomial
growth at infinity. Finally, (B2) and (B3) prescribe densities. Close to z = 0, the density of (B3)
equals the density of the α-stable processes related to the fractional Laplacian ∆α/2. (B3) implies
(B1)2, and if α ∈ [0, 1), then (B3) also implies (B1)1.

Example 2.1. When the stock returns are modeled as exponential Levy processes the integral
terms equals (1.4) or (1.5) with η(x, z) = x(ez − 1) in the one-dimensional uncontrolled case, see
[19]. An important extension of this expression satisfying (A2) and (A4) is η(x, v, z) = η̄(x, v)φ(z)
where η̄ is bounded and Lipschitz and |φ(z)| ≤ C(e|z| − 1), |Dφ(z)| ≤ Ce|z|.

Example 2.2. Assumptions (B2) and (B3) is satisfied by all bounded and unbounded Lévy
processes used in the literature to model financial markets, see [19] for a nice overview. In the
models of Merton and Kou, the Levy measures have bounded densities (no singularity), in the
Merton case [38] given by

ν(dz) =
λ

δ
√

2π
e−

|z−µ|2

2δ2 dz for constants λ, δ, µ.

For these models (B2) holds. The Variance Gamma model has a Levy density with an integrable
singularity at z = 0, and satisfy (B3) with α = 0. The Normal Inverse Gaussian model [40] has a
non-integrable density corresponding to α = 1 in (B3), and the Levy measure is

ν(dz) =
C

|z|
eAzK1(B|z|) for constants A,B,C,

where K1 is a modified Bessel function of 2nd kind. Finally we mention models using tempered
α-stable processes, e.g. the CGMY model [18]. Here α ∈ (0, 2) in (B3) and the Levy measure is
give by

ν(dz) =
c−

|z|1+α
e−λ−|z|1z<0 +

c+
|z|1+α

e−λ+|z|−1z>0

for constants α ∈ (0, 2), c−, c+, λ−, λ+ ≥ 0.

It is well known that under the above assumptions the solutions to (1.1) and (1.2) need not be
smooth, and that the correct concept of (weak) solutions is that of viscosity solutions. For the
definition of viscosity solution in this case we refer to [41, 3, 39, 29, 4]. We state without proof a
well-posedness and regularity result for (1.2). The proof of this result is standard, and we refer to
[3, 39, 28, 29] for the proofs of similar results.

Theorem 2.1. Assume (A1) – (A3) and (B1)2 hold.
(i) There exists a unique viscosity solution u ∈ Cb(RN ) of equation (1.2) which is Hölder

continuous, i.e., there is a δ ∈ (0, 1] such that

|u(x)− u(y)| ≤ C|x− y|δ for all x, y ∈ RN .

(ii) There exists a constant c1 > 0 depending only on supv[σ(·, v)]1, supv[b(·, v)]1, and
supv

∫
E

[η(·, v, z)]21ν(dz) such that if c0 ≥ c1, then the viscosity solution u of (1.2) is Lipschitz
continuous (δ = 1 above).
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(iii) Let u,−v ∈ USCb(RN ). If u and v are respectively viscosity sub- and supersolutions of
(1.2), then u ≤ v in RN .

Remark 2.2. Note that this result also holds for (1.1) under assumptions (A1) – (A3) and either one
of (B1)1 or (B1)0. Simply write this equation in the form (1.2) with b replaced by b̄ = b−

∫
E
ην(dz).

2.2. Reduction to bounded measure with compact support. Consider Levy measures ν
which are not bounded nor have compact support. We assume that (B3) hold and consider two
cases: (i) α ∈ [0, 1) and (ii) α ∈ [1, 2). In the first case we truncate the Levy and compensate by
adding a drift and a diffusion term. Let us introduce the “two-scales” truncated Lévy measure

(2.1) νr,R(dz) := 1r<|z|<R ν(dz),

where r ∈ (0, 1) and R > 1. Clearly, νr,R(dz) is a bounded and compactly supported measure
satisfying assumption (B1)0. When α ∈ (0, 1) assumption (B1)1 holds and the HJB equation is
(1.1). This equation is approximated by

sup
v∈V

{
− tr [ā(x, v)D2u]− b̄(x, v)Du+ c(x, v)u− f(x, v)− Īvu(x)

}
= 0 in RN ,(2.2)

where

ā(x, v) = a(x, v) +
1
2

∫
0<|z|<r

η(x, v, z)η(x, v, z)T ν(dz),(2.3)

b̄(x, v) = b(x, v) +
∫

0<|z|<r

η(x, v, z)ν(dz),(2.4)

Īvu(x) =
∫

E

[φ(x+ η(x, v, z))− φ(x)] νr,R(dz).(2.5)

This gives an approximation of Ivφ which is “third order” near z = 0 since

|Īvφ+ (b̄− b)Dφ+ tr [(ā− a)D2φ]− Ivφ|

≤ K|D3φ|0
∣∣∣∣ ∫

0<|z|<r

|η(·, ·, z)|3ν(dz)
∣∣∣∣
0

+K|φ|0
∫
|z|>R

ν(dz).

In case (ii) we truncate the Levy measure and compensate by adding a diffusion term. When
α ∈ [1, 2) assumption (B1)1 is not satisfied and the HJB equation is (1.2). We approximate this
equation by

sup
v∈V

{
− tr [ā(x, v)D2u]− b̃(x, v)Du+ c(x, v)u− f(x, v)− Īvu(x)

}
= 0 in RN ,(2.6)

where ā and Īvu is defined in (2.3) and (2.5), and

b̃(x, v) = b(x, v) +
∫

E

1|z|<1η(x, v, z)νr,R(dz).(2.7)

Again we obtain an approximation of the integral term (J vφ this time) which is “third order”
near z = 0 since

|Īvφ+ (b̃− b)Dφ+ tr [(ā− a)D2φ]− J vφ|

≤ K|D3φ|0
∣∣∣∣ ∫

0<|z|<r

|η(·, ·, z)|3ν(dz)
∣∣∣∣
0

+K|φ|0
∫
|z|>R

ν(dz).

Equations (2.2) and (2.6) are almost, but not quite, of the same form as (1.1). In [30] it is
proved that Theorem 2.1 still holds for solutions of (2.2) and (2.6). The following result gives
error bounds for the approximations (2.2), (2.6) of equations (1.1), (1.2).

Lemma 2.3. Assume (A1) – (A3) and (B3) hold and let u, ū, v, v̄ ∈ C0,1(RN ) solve (1.1), (2.2),
(1.2), (2.6) respectively. Then for r > 0 small enough and R large enough we have

|u− ū|0 + |v − v̄|0 ≤ C1(r1−α/3 + e−`R),

for some constant C1 independent of r and R.
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The result about v, v̄ is proved in [30], while the result about u, ū is new but the proof is almost
identical to the proof of the v, v̄ result. We omit it.

Remark 2.4. The compensating drift and diffusion terms are added to improve the convergence of
the approximation (of the small jumps). The error is of order r1−α/2 without the compensating
diffusion (see [30]), while it is of order r1−α without compensating drift and diffusion in the case
α ∈ [0, 1).

Remark 2.5. In probabilistic terms, the explanation for the improved convergence is that the small
jumps of a Levy process can be approximated by a Brownian motion, we refer to e.g. [2, 19] for
details. Moreover using probabilistic methods (Berry-Essen type estimates), it is possible to prove
convergence of order r in some cases [2]. We refer to [20] where such estimates are made explicit
for linear parabolic equations with constant coefficients.

Remark 2.6. When α = 0 no improvement is obtained by adding drift and diffusion terms to the
equation. If ν has a bounded density, no truncation is needed close to z = 0.

2.3. Reduction to a bounded domain. Reduction to a bounded domain is key step in order
to implement a numerical method. Following ideas of [17], we restrict equations (1.1) and (1.2) to
bounded domains by truncating the coefficients outside some large ball,

B 1
µ

= {x ∈ Rn : |x| < 1
µ
} for µ > 0.

Let ξµ ∈ C∞c (RN ) be a cut-off function satisfying 0 ≤ ξµ ≤ 1 and ξµ(x) = 1 for x ∈ B 1
µ

and define

σµ = ξµ(x)σ(x, a), bµ = ξµ(x)b(x, a), ηµ(x, v, z) = ξµ(x)η(x, v, z).

Since bµ, σµ and ηµ satisfies the same assumptions of σ, b and η for any µ, there exists a unique
viscosity solution uµ of the equation

(2.8) sup
v∈V

{
− tr [aµ(x, v)D2u]− bµ(x, v)Du+ c(x, v)u− f(x, v)− J v

µ (x)
}

= 0 in RN

where aµ(x, v) = 1
2σµ(x, v)σT

µ (x, v) and J v
µ (·) is defined as in (1.5) with ηµ in place of η. Since

the coefficients bµ, σµ and ηµ are zero outside of supp(ξµ), the solution uµ (2.8) is given by

uµ(x) = min
v∈V

f(x, v)
c(x, v)

for any x 6∈ supp(ξµ).

The next result give a crude bound on the error that this cut-off procedure introduces.

Lemma 2.7. Assume (A1), (A2), (B1)2 hold, that (1.2) and (2.8) satisfy the dynamic program-
ming principle, and that u, uµ solve (1.2), (2.8) respectively. Then there exists a constant C such
that

|u(x)− uµ(x)|0 ≤ Cµ2(1 + |x|2) in B 1
µ
.

We skip the proof since it is similar to the proof of Proposition 3.1 in [17] when we are equipped
with the moment estimates (3.2) and (3.4) of [39]. The dynamic programming principle has
recently been extended to the current setting in [11].

Remark 2.8. As in Remark 2.2 we immediately get an analogous result for (1.1) under assumption
(B1)1.

Remark 2.9. If the equation is uniformly elliptic or has a non-degenerate singular integral term,
then you expect estimates decaying exponentially as µ → ∞. We refer to [20, 36] for such result
in a linear one-dimensional setting.

3. Construction of the scheme

In subsections 3.1 and 3.2 we always assume that (A1) – (A3) and (B1)0 hold: The Levy
measure ν is bounded and the HJB equation has the form (1.1). We can always reduce to this
case by a truncation. In subsection 3.3 we discuss the general case.
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3.1. Semi-discretization. We introduce a control problem for which (1.1) is the corresponding
dynamic programming or HJB equation. We start by defining the controlled dynamics. Since the
measure ν is bounded, we can normalize ν and obtain a probability measure µ as follows

µ(dz) =
1
λ
ν(dz)

where

(3.1) λ =
∫

E

ν(dz)

Now we consider a Markov process Xvt
t evolving according the SDE

(3.2) dXt = b(Xt− , vt−)dt+ σ(Xt− , vt−)dWt +
∫
|z|>0

η(Xt− , vt− , z)µ̄(dz, dt),

where µ̄ is a Poisson measure corresponding to a compound Poisson process with jump intensity
λ and jump distribution µ. The control vt belongs to V, the set of all progressively measurable
processes with values in V . Since we assume that ν and hence µ̄ are bounded, on any finite time
interval Xt will only jump finitely many times with probability one. Between two jump times Ti

and Ti+1 the process diffuses according to the SDE

(3.3) dXt = b(Xt− , vt−)dt+ σ(Xt− , vt−)dWt.

For vt ≡ v ∈ V and a(x, v) = 1
2σ(x, v)σT (x, v), the infinitesimal generator of the process Xt is

Lvψ(x) = lim
t→0

Ex[ψ(Xt)]− ψ(x)
t

= tr [a(x, v)D2ψ] + b(x, v)Dψ + Ivψ(x)

for ψ ∈ C2(RN ). On the paths of the process Xt we define the discounted cost functional

J(x, vt) = Ex

[ ∫ ∞

0

f(Xt, vt)e−
R t
0 c(Xs,vs)dsdt

]
,

and we consider the corresponding value function

u(x) = inf
vt∈V

J(x, vt).

In [11] it is proved that u is the unique viscosity solution of equation (1.1).
Following the approach of [16, 17] we construct an approximation scheme for the equation (1.1)

by discretizing the associated control problem. We fix a discretization step h > 0 and consider two
stochastic processes Nn and Zn, n ∈ N, taking values in N and in RN and representing the n-th
jump time and the corresponding z-jump (size and direction) of the Poisson measure µ̄. We set
N0 = 0 and Z0 = 0 and assume that Nn has independent hλ-exponentially distributed increments,
i.e. the probability distribution of Nn is given by

P[Nn+1 −Nn ≥ j|N0, N1, . . . , Nn] = e−hλj , n = 0, 1, 2, . . . ,

while the Zn, n ∈ N, are i.i.d. random variables with probability density µ. Now we define a
discrete time stochastic process Xn approximating the continuous time process Xt.

X0 = x,

Xn = Xn−1 + hb(Xn−1, vn−1) +
√
h

∑d
m=1 σm(Xn−1, vn−1)ξm

n−1,

for n = Ni + 1, Ni + 2, . . . , Ni+1 − 1,
XNi+1 = XNi+1−1 + η(XNi+1−1, vNi+1−1, Zi),

for i = 1, 2, 3, . . . , where σm denote the m-th column of σ and ξm
n , m = 1, . . . , d are random

variables taking values in {−1, 0, 1} such that

P[{ξi
n = ±1}] =

1
2d

and P[{ξi
n 6= 0} ∩ {ξj

n 6= 0}] = 0, i 6= j.

The discrete control {vn} is a random variable with values in V which is measurable with respect
to the σ-algebra generated by X1, . . . , Xn.
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Between jumps the process evolves like a random walk approximating the SDE (3.3), and when
the process jumps there is no diffusion/random walk. The generator of the discrete process is

(3.4) Lv
hψ(x) =

Ex[ψ(X1)]− ψ(x)
h

= e−hλLv
hψ(x) +

1− e−hλ

h
Iv

hψ(x),

for ψ ∈ C0(RN ) and where

Lv
hψ =

1
2dh

d∑
m=1

[
ψ(x+ hb(x, v) +

√
hσm(x, v)) + ψ(x+ hb(x, v)−

√
hσm(x, v))− 2ψ(x)

]
,

Iv
hψ =

1
λ
Ivψ,

with Iv as in (1.4). Observe that at this level the space variable is not discretized, therefore the
discrete process has the same jump distribution as the continuous process.

On the paths of the discrete process we define the cost functional

(3.5) Jh(x, {vn}) = Ex[
∞∑

n=0

he−h
Pn−1

i=0 c(Xi,vi)f(Xn, vn)],

(with the convention
∑−1

i=0 = 0), and the corresponding value function for the discrete control
problem

uh(x) = inf
{vn}

Jh(x, {vn}).(3.6)

Now it is easy to see, at least formally [9], that the following dynamic programming principle
holds:

uh(x) = inf
{vi}

Ex

[ P∑
n=0

he−h
Pn−1

i=0 c(Xi,vi)f(Xn, vn) + e−h
PP

i=0 c(Xi,vi)uh(XP+1)
]
,

for any P ∈ N. Taking P = 0 in the above equation and noting that X0 = x, we get

uh(x) = inf
v∈V

Ex[hf(X0, v) + e−hc(X0,v)uh(X1)]

= inf
v∈V

{
hf(x, v) + e−hc(x,v)

[e−hλ

2d

d∑
m=1

(uh(x+ hb(x, v) +
√
hσm(x, v))(3.7)

+ uh(x+ hb(x, v)−
√
hσm(x, v)) +

1− e−hλ

λ

∫
E

uh(x+ η(x, v, z))ν(dz)
]}
.

Rearranging the terms in the previous equation and dividing by he−hc(x,v) we get

(3.8) sup
v∈V

{
−Lv

huh(x) +
ehc(x,v) − 1

h
uh(x)− ehc(x,v)f(x, v)

}
= 0 in RN ,

where Lv
h(·) is as in (3.4). We will talk about sub- and supersolutions of this equation, meaning

that (3.8) holds as an inequality with ≤ and ≥ respectively. For the scheme (3.8) we have the
following easy properties:

Proposition 3.1. Assume (A1) – (A3) and (B1)0.
(i) If uh and vh are bounded sub- and supersolutions of (3.8), then uh ≤ vh in RN .
(ii) Any solution uh of (3.8) is bounded and satisfies for all h > 0,

|uh|0 ≤
supv |f(·, v)|0

c0
, where c0 is as in (A3).

(iii) There exists a unique bounded continuous function uh solving (3.8).
(iv) For 0 < h < 1 and φ ∈ C4(RN ) satisfying |φ|0 + · · ·+ |D4φ|0 <∞,

|Lvψ(x)− Lv
hψ(x)| ≤ C1h(|D2φ|0 + |D3φ|0 + |D4φ|0) + C2hλ((1 + |

∫
E

ην|)|Dφ|0 + |D2φ|0),

where the constants C1 and C2 only depend on supv |σ|0, supv |b|0.
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Remark 3.2. For the truncation of an unbounded measure to converge as h→ 0, we need λ→∞
as h → 0, while the scheme (3.8) converges only if both h → 0 and λh → 0 by (iv). The last
condition means that the small jumps must be resolved in the grid.

Proof. We work with the scheme in the equivalent form (3.7). Note that the scheme is monotone,
it has positive coefficients. If u and v be sub- and supersolutions of (3.8), an easy and standard
computation using (3.7) and assumption (A3) shows that

uh(x)− vh(x) ≤ e−c0h|(uh − vh)+|0,

and hence (1 − e−c0h)|(uh − vh)+|0 ≤ 0 which proves (i). A similar computation shows (ii) after
noting that hcehc

ehc−1
≤ 1 for hc ≥ 0. Next denote the right hand side of (3.7) by Thuh, and note that

Th is contraction in the | · |0 norm,

Thuh − Thvh ≤ e−hc0 |uh − vh|0.

Existence and uniqueness of a continuous bounded solution to (3.8) follows from Banach’s fixed
point theorem and this proves (iii). Finally, to prove (iv), note that since Iv

h = λ−1Iv we may
write

Lvψ − Lv
hψ = (Lv − Lv

h)ψ + (Iv − Iv)ψ − (1− e−hλ)Lv
hψ − (1− hλ−1(1− e−hλ))Ivψ,

where Lvψ(x) = tr [a(x, v)D2ψ(x)] + b(x, v)Dψ(x). By Taylor expansion, e.g.

|(Lv − Lv
h)ψ| ≤ h|b|20|D2ψ|0 + (h2|b|30 + h|b|0|σ|20)|D3ψ|0 + (h3|b|40 + h2|b|20|σ|20 + h|σ|40)|D4ψ|0,

and the estimates |1− e−x|, |1− x−1(1− e−x)| ≤ |x| the result follows. �

Next we give an optimal Lipschitz regularity and continuous dependence on coefficients result
for the scheme (3.8).

Proposition 3.3. Let uh and ũh be solutions of (3.8) corresponding to the data σ, b, c, f, η, ν and
σ̃, b̃, c̃, f̃ , η̃, ν respectively, assume both sets of coefficients satisfy (A1) – (A3) and (B1)0, and that
hλ ≤ C̄0 and h ∈ (0, 1]. Then there exist constants c1, L,K ≥ 0 (only depending on the data and
C̄0) such that if c0 ≥ c1 (c0 as in (A3)), then for all h > 0, x, y ∈ RN ,

|uh(x)− ũh(y)| ≤ L|x− y|+K sup
v∈V

[
|f − f̃ |0 + |c− c̃|0

+ |b− b̃|0 + |σ − σ̃|0 +
∣∣∣ ∫

E

|η(·, z)− η̃(·, z)|2ν(dz)
∣∣∣1/2

0

]
.

If the coefficients are equal and uh = ũh, then this is a Lipschitz regularity result, while if
x = y then this is a continuous dependence on the coefficients result. This result one of the main
contributions of this paper, and it will play a key role in the next section where error bounds are
derived. It extends similar results of [5] to equations with integral terms. The proof is rather long
and technical and we have put the main bulk in the appendix. In the pure diffusion case, the
current proof simplifies considerably the arguments of [5].

Proof. The result follows from Theorem A.1 in the Appendix after writing

b =
[
b− 1− e−hλ

λe−λh

∫
E

ην
]

+
1− e−hλ

λe−λh

∫
E

ην,

and noting that by the Cauchy-Schwartz inequality,∣∣∣b− b̃− 1− e−hλ

λe−λh

∫
E

[η − η̃]ν
∣∣∣
0
≤ |b− b̃|0 + (ehλ − 1)λ−1/2

∣∣∣ ∫
E

|η − η̃|2ν
∣∣∣1/2

0
.

�

Remark 3.4. When c0 < c1 the solution to (3.8) is only Hölder continuous. We will not discuss
this case here, but refer instead to [5] for how to obtain results in this case.
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3.2. The fully-discrete scheme. In this section we introduce a FEM like discretization of (3.8)
yielding a fully discrete scheme. For a nice introduction to FEMs we refer to [13]. For k > 0 let
T k = {Sk

j }j∈N be a non-degenerate triangulation of RN , i.e. a collection of N -simplices Sk
j such

that
∪

j∈N
Sk

j = RN , sup
j∈N

(diamSj) ≤ k, ρk ≤ sup
j∈N

(diamBSk
j
),

where ρ ∈ (0, 1), diam denotes the diameter of the set, and BSk
j

is the greatest ball contained in
Sk

j . We denote by Xk = {xi}i∈N the corresponding set of the vertices, and introduce the space of
continuous piecewise linear functions on T k,

W k = {w ∈ C(RN ) : Dw(x) is constant in Sk
j }.

Every element w in W k can be expressed as

w(x) =
∑
i∈N

βi(x)w(xi),

for basis functions (the so-called tent functions) βi ∈ W k satisfying βi(xj) = δij for i, j ∈ N. It
immediately follows that 0 ≤ βi(x) ≤ 1,

∑
i∈N βi(x) = 1, βi has compact support, and at any

x ∈ RN at most N +1 βi’s are non-zero. The family {βj}j is a partition of unity. On any simplex
Sk

i , the βj ’s are called the barycentric coordinates of Sk
i .

The fully discrete scheme can then be formulated as follows: Find the function u ∈ W k that
satisfies (3.8) at every vertex xi ∈ Xk, or equivalently,

(3.9) u(xi) = inf
v∈V

{
e−hc(xi,v)

[
e−λh

∑
j

Mij(v)u(xj) + (1− e−λh)
∑

j

Pij(v)u(xj)
]

+ hf(xi, v)
}
,

for every xi ∈ XK . Here the matrices M(v) and P (v) are given by

M(v) =
d∑

m=1

1
2d

(M+
m(v) +M−

m(v))(3.10)

for M±
m,ij(v) = βj

(
xi + hb(xi, v)±

√
hσm(xi, v)

)
, and

Pij(v) =
1
λ

∫
E

βj(xi + η(xi, v, z))ν(dz).(3.11)

Note that M is a stochastic matrix, and for any m, only N + 1 entries of any row of M±
m are

non-zero. The matrix P is non-zero only if the vertex xj belong to a simplex which has nonempty
intersection with the set xi + η(xi, v, supp(ν)) for all v ∈ V .

As a final step we also discretize Pij by (monotone) quadrature

Q∆z[φ] :=
∑
j∈N

φ(zj)ωj where zj ∈ E, ωj ≥ 0,(3.12)

satisfying the error bound

E∆z[φ] :=
∣∣∣ ∫

E

φ(z)dz −Q∆z[φ]
∣∣∣ ≤ K̄‖Dφ‖L1∆z for φ ∈W 1,1(Rn).(3.13)

Here ∆z > 0 is the discretization parameter. An example is the compound midpoint rule where
Q∆z[φ] =

∑
j φ(zj)∆zM and {zj}j is a renumeration of the uniform z-grid (∆z ZM ) ∩ E. All

sensible tensor product quadratures satisfy the (first order) error bound, and the bound is optimal
if the integrand φ is not more regular. The monotonicity assumption ωj ≥ 0 is satisfied for
compound Gauss and Newton-Cotes types of quadratures in any space dimension and when the
order is less than 9 in the Newton-Cotes case. We refer to [30] for examples and a wider discussion
of these issues. If we assuming that ν has a density m satisfying (B2), we get the following final
scheme: Find u ∈W k such that

(3.14) u(xi) = inf
v∈V

{
e−hc(xi,v)

[
e−λh

∑
j

Mij(v)u(xj) + (1− e−λh)
∑

j

P̄ij(v)u(xj)
]

+ hf(xi, v)
}
,
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where Mij is defined in (3.10) and

P̄ij(v) =
1
λ
Q∆z[βj(xi + η(xi, v, ·))m(·)].

We have the following existence, uniqueness, and partial convergence result for (3.14).

Theorem 3.5. Assume (A1) – (A4), (B2), (3.12), (3.13) hold, hλ ≤ C̄0, and h ∈ (0, 1]. Then
there exists a unique bounded solution uhk∆z ∈ W k to (3.14). Furthermore, if the solution uh of
(3.8) belongs to C0,1(RN ), then

|uh − uhk∆z|0 ≤
|uh|1

1− e−c0h

(
2k + C∆z

)
.

Proof. Existence and uniqueness follow from a fixed point argument like in the proof of Proposition
3.1. To prove the error bound, note that since uhk∆z(x) =

∑
j∈N βj(x)uhk∆z(xj), βj ≥ 0, and∑

βj = 1,

|uh(x)− uhk∆z(x)| ≤
∑
j∈N

(
βj(x)|uh(x)− uh(xj)|+ βj(x)|uh(xj)− uhk∆z(xj)|

)
(3.15)

≤ |uh|1k +
∑
j∈N

βj(x)|uh(xj)− uhk∆z(xj)|.

The last term can be estimated by using (3.8) and (3.14). Easy computations show that

|uh(xj)− uhk∆z(xj)|

≤ e−hc0e−λh|uhk∆z − uh|0 + e−hc0(1− e−λh)
[∑

j

P̄ij |uh(xj)− uhk∆z(xj)|

+
∣∣∣ ∑

j

P̄ijuh(xj)−
∑

j

Pijuh(xj)
∣∣∣︸ ︷︷ ︸

A

+
∣∣∣ ∑

j

Pijuh(xj)−
1
λ

∫
E

uh(xi + η(xi, z, v))ν(dz)
∣∣∣︸ ︷︷ ︸

B

]
.

Note that
∑

j P̄ij = 1
λQ∆z[1] = 1 by (3.13) since

∑
βj = 1. Furthermore,

A =
∣∣∣ 1
λ

∫
E

Ikuh(xi + η(xi, v, z))m(z)dz −Q∆z

[
Ikuh(xi + η(xi, v, ·))m(·)

]∣∣∣
≤ ∆z

λ

∥∥D[
Ikuh(xi + η(xi, v, z))m(z)

]∥∥
L1 ≤

∆z
λ

(
|uh|1L3C0 + |uh|0C1

) ∫
E

e−ε|z|dz,

B =
∣∣∣ 1
λ

∫
E

(uh − Ikuh)(xi + η(xi, v, z))ν(dz)
∣∣∣ ≤ k|uh|1

∫
E
ν(dz)
λ

= k|uh|1,

where Ikφ(x) =
∑

i βi(x)φ(xi) is piecewise linear interpolation of φ on Xk and we have used
(B2), (A4), and (3.13). Combining these estimates and (3.15), using the properties of βi(x), and
remembering that h ∈ (0, 1] then gives the result. �

Remark 3.6. Since h ∈ (0, 1], |uh − uhk∆z|0 ≤ C|uh|1
c0

k+∆z
h , which is consistent with the estimates

obtained in [16] in a different setting.

Remark 3.7. If we use the cut-off procedure explained in Section 2.3 (a way of reducing to a
bounded domain), then equation (3.14) gives a finite system of equations. In view of the integral
term the new effective domain then becomes Bµ + supp(ν) (see Section 2.3).

3.3. Schemes for unbounded measures ν. We consider general unbounded Levy measures ν
under assumption (B3). There are two different cases: (i) α ∈ [0, 1) with HJB equation (1.1),
and (ii) α ∈ [1, 2) with HJB equation (1.2). To derive our schemes, we first reduce to a bounded
Levy measure νr,R as explained in Section 2. The result are the approximate HJB equations
(2.2) and (2.6). These equations are then approximated by a slightly modified version of the
semi-Lagrangian scheme (3.8) (or equivalently (3.7)) defined in Section 3.1.
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We propose the following semi-Lagrangian scheme in case (i)

vh(x) = inf
v∈V

{
hf(x, v) + e−hc(x,v)

[e−hλr,R

4d

d∑
m=1

(
vh(x+ hb̄(x, v) +

√
hσ̄+,m(x, v))(3.16)

+ vh(x+ hb̄(x, v) +
√
hσ̄−,m(x, v)) + vh(x+ hb̄(x, v)−

√
hσ̄+,m(x, v))

+ vh(x+ hb̄(x, v)−
√
hσ̄−,m(x, v))

)
+

1− e−hλr,R

λr,R

∫
E

vh(x+ η(x, v, z))νr,R(dz)
]}
,

and in case (ii)

wh(x) = inf
v∈V

{
hf(x, v) + e−hc(x,v)

[e−hλr,R

4d

d∑
m=1

(wh(x+ hb̃(x, v) +
√
hσ̄+,m(x, v))(3.17)

+ wh(x+ hb̃(x, v) +
√
hσ̄−,m(x, v)) + wh(x+ hb̃(x, v)−

√
hσ̄+,m(x, v))

+ wh(x+ hb̃(x, v)−
√
hσ̄−,m(x, v)) +

1− e−hλr,R

λr,R

∫
E

wh(x+ η(x, v, z))νr,R(dz)
]}
,

where λr,R :=
∫

E
νr,R(dz), b̄, b̃, νr,R are defined in Section 2, and σ̄±,m is m-th column of

σ̄±(x, v) = σ(x, v)±
√∫

0<|z|<r

η(x, v, z)η(x, v, z)T ν(dz),(3.18)

where the square root denotes the matrix square root.

Remark 3.8. The additional terms in (3.16) and (3.17) compared with (3.8), enable us to use

σ±
√∫

ηηT ν instead of
√
σσT +

∫
ηηT ν as diffusion matrix. The consistency relation Proposition

3.1 (iv) still holds, and if η(x, v, z) = η1(x, v)η2(z), then the square root in (3.18) equals Cη1(x, v)
where C is the precomputable constant matrix

√∫
0<|z|<r

η2(z)ηT
2 (z)ν(dz).

Remark 3.9. These schemes are similar to (3.8), and can be derived in a similar way. The conclu-
sions of Propositions 3.1 and 3.3 (when b-terms are replaced by b̄- or b̃-terms as defined in Section
2) still hold for solutions of (3.16) and (3.17). We refer to [30] for the technical modifications
needed to handle the integral term in the diffusion coefficients.

Remark 3.10. Previously bounded quantities may blow up as r → 0. Indeed by (B3) and (A2) we
have for r ∈ (0, 1),

λr,R ≤ K

αrα
for α ∈ (0, 2),

∣∣∣ ∫
E

ηνr,R(dz)
∣∣∣ ≤ { L2K

(α−1)rα−1 for α ∈ (1, 2)
L2K for α ∈ (0, 1).

(3.19)

4. Convergence estimates for the discrete-time problem

In this section we prove a priori error bounds for the convergence of solutions uh of the semi-
discrete scheme (3.8) to the unique viscosity solution u of (1.1). We consider two cases: (i) The
measure ν is bounded and (B1)0 holds and (ii) the measure ν is the truncation of an unbounded
measure satisfying (B3).

In view of the equi-boundedness, equi-continuity and consistency results of Propositions 3.1 and
3.3, uh converge locally uniformly to u by the Arzela-Ascoli Theorem, stability and uniqueness
results for viscosity solutions (see e.g. [4]), and the consistency result in Proposition 3.1. It is
also possible to obtain convergence without equi-continuity (i.e. under weaker assumptions on the
coefficients) using so-called half relaxed limits [7]. Such results are given in [14] for some non-local
equations, but these results does not cover the HJB equations we consider here.

Now we proceed to obtain a priori estimates for the convergence of uh to u. To do this we will
make use of an abstract result in [30], which we will describe below. Consider the equation

(4.1) F (x, u,Du,D2u, u(·)) = 0 x ∈ RN
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where u(·) represents non-local (integral) terms. Let h > 0 be a discretization parameter and
consider an approximation scheme for (4.1) written in abstract form as

(4.2) S(h, x, uh(x), [uh]x) = 0 x ∈ RN ,

where [uh]x represents a function defined at x via all the possible value of uh. We need the
following set of assumptions.
(C1) (Monotonicity) There exists c0 > 0 such that for any h > 0, x ∈ RN , ζ ∈ R, τ > 0 and

bounded functions u, v such that u ≤ v in RN , then

S(h, x, ζ + τ, [u+ τ ]x) ≥ S(h, x, ζ, [v]x) + c0τ

(C2) (Regularity) For any h > 0 and any continuous, bounded function φ, the function

x 7→ S(h, x, φ(x), [φ]x)

is bounded and continuous on RN and the function

ζ 7→ S(h, x, ζ, [φ]x)

is uniformly continuous for bounded ζ, uniformly in x.

(C3) (Consistency) There exists a function E(K̃, h, ε) such that for any sequence {φε}ε of
smooth functions satisfying

|Dβφε(x)| ≤ K̃ε1−|β| in RN , for any β ∈ NN ,

where |β| =
∑N

i=1 βi, the following inequality holds:

|S(h, x, φε(x), [φε]x)− F (x, φ,Dφε, D
2φε)| ≤ E(K̃, h, ε) in RN .

(C4) (Convexity) Let (ρε)ε>0 be a family of mollifiers (smooth, positive functions with mass 1
and support in {|x| < ε}). For any Lipschitz-continuous function φ, there exists a constant
C such that for any x and h∫

RN

S(h, x, φ(x− e), [φ(· − e)]x)ρ(e)de ≥ S(h, x, (φ ∗ ρε)(x), [(φ ∗ ρε)]x)− Cε

(C5) (Commutation with translations) For any h > 0 small enough, 0 < ε < 1, y ∈ RN , ζ ∈ R,
continuous bounded function φ and |e| ≤ y, we have

S(h, y, ζ, [φ]y−e) = S(h, y, ζ, [φ(· − e)]y).

(D) For h small enough and ε ∈ [0, 1), there is a unique solution uε
h of the scheme

(4.3) max
|e|≤ε

S(h, x+ e, uε
h(x), [uε

h]x) = 0 in RN ,

where uh := u0
h also solve (4.2), and a constant C independent of h, ε such that

|uε
h|1 ≤ C and |u0

h − uε
h|0 ≤ Cε.

We remark that we are using a more general consistency relation here than in [30], and that
this extra generality will be needed when we consider unbounded measures ν. The next result is
a restatement of Theorem 3.4 in [30] in view of the new consistency relation (C3).

Theorem 4.1. Assume (A1) – (A3), (B1)2, (C1) – (C5), and (D) hold, and let u and uh be
solutions of respectively (4.1) and (4.2) satisfying K̃ := |u|1 ∨ |uh|1 < ∞. Then there exists a
constant C depending only on L1, L2, c0 from (A2) and (A3) such that

|u− uh| ≤ Cmin
ε>0

(
ε+ E1(K̃, h, ε)

)
in RN .

Remark 4.2. To prove (D) for the scheme (3.8), we will need to assume also (B1)0, hλ ≤ C̄0, h ≤ 1,
and c0 ≥ c1 for both c1 defined in Theorem 2.1 and Proposition 3.3. Under these assumptions we
also have K̃ := |u|1 ∨ |uh|1 <∞.
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We will apply this abstract result to derive error bounds for the scheme (3.8). We rewrite the
scheme in the form (4.2) with

S(h, x, r, [ψ]x) =

sup
v∈V

{−e−λh

2dh

d∑
m=1

[
[ψ]x(hb(x, v) +

√
hσm(x, v))− 2r + [ψ]x(hb(x, v)−

√
hσm(x, v))

]
(4.4)

− 1− e−λh

λh

∫
E

[ψ(x+ η(x, v, z))− r] +
ehc(x,v) − 1

h
r − ehc(x,v)f(x, v)

}
,

and [ψ]x(z) = ψ(x+ z).

Lemma 4.3. Assume (A1) – (A3) and (B1)0, hλ ≤ C̄0, h ≤ 1. Then the scheme (3.8) (and
equivalently (4.4)) satisfies assumptions (C1)–(C5) with

E(K̃, h, ε) = C1h(K̃ε−1 + K̃ε−2 + K̃ε−3) + C2hλ((1 + |
∫

E

ην|)K̃ + K̃ε−1),

where the constant C1 and C2 only depend on supv |σ|0, supv |b|0.
If in addition c0 ≥ c1 for both c1’s in Theorem 2.1 and Proposition 3.3, then assumption (D)

also holds with constants C only depending on the data and C̄0.

Proof. It is straightforward to verify (C1) with c0 = c0 where c0 is defined in (A3). (C2) follows
from the assumptions on the coefficients, while (C3) follows from Proposition 3.1 (iv). By a
straight forward computation, it follows that (C4) holds with C = 0. We refer to [30] for similar
computations. Finally, (C5) holds since [φ]x−e = [φ(· − e)]x for any continuous function φ.

To prove (D), observe that (4.3) can be rewritten in the form (4.4) (by defining a new control
v̄ = (v, e)). The coefficients of this new equation still satisfy (A1) - (A3). Therefore (D) follows
after an application of Propositions 3.1 and 3.3. �

Now we are in a position to state the error bounds. First we consider the bounded case, i.e
(B1)0 holds. In this case the equation is (1.1) which is approximated by the scheme (3.8). Note
that the integral operator has not yet been discretized.

Theorem 4.4 (Bounded measure). Assume (A1) – (A3), (B1)0, h ≤ 1, and c0 ≥ c1 for both c1’s
in Theorem 2.1 and Proposition 3.3. Let u be the solution of (1.1) and uh be the solution of (3.8)
(or equivalently (4.4)).

(a) (General IPDEs) Then |u− uh|0 ≤ Ch1/4.

(b) (1st order IPDEs) If in addition σ ≡ 0, then |u− uh|0 ≤ Ch1/2.

In both cases the constant C depends only on the coefficients, c1, and λ.

Proof. Part (a) is an easy consequence of Theorem 4.1 and Lemma 4.3. Part (b) follows in a
similar manner after noting that the consistency relation corresponding to Proposition 3.1 (iv)
now becomes

|Lvψ(x)− Lv
hψ(x)| ≤ C1h|D2φ|0 + C2hλ((1 + |

∫
E

ην|)|Dφ|0 + |D2φ|0).

�

Remark 4.5. The convergence rate obtained in Theorem 4.4 is the same as in the pure PDE case,
see [27, 5]. In the first order case and when the Levy measure is bounded, convergence rate 1/2
for semi-Lagrangian schemes like (3.8) have previously be obtained in [16]. However the integral
term in [16] has a different form compared to the one we consider here.

Remark 4.6. The scheme (3.8) uses a first order accurate approximation of 2nd derivatives as can
be seen from the consistency relation Proposition 3.1 (iv). This leads to lower rates of convergence
than for some monotone FDMs that use 2nd order accurate approximations of 2nd derivatives,
see [33, 30, 10]. There the rate is 1/2, while for a more general class of FDMs the rate is at least
1/5, see [6] for the pure PDE case.
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We proceed to the case of general unbounded Levy measure ν under assumption (B3). There
are two different cases: (i) α ∈ [0, 1) with HJB equation (1.1), and (ii) α ∈ [1, 2) with HJB equation
(1.2). In case (i), α ∈ (0, 1), as a consequence of Lemma 4.3, Theorems 4.1 and 2.3 we have the
following convergence result.

Theorem 4.7 (Unbounded measure I). Assume (A1) – (A3), (B3) with α ∈ (0, 1), h ≤ 1, and
c0 ≥ c1 for both c1’s in Theorem 2.1 and Proposition 3.3. Let u be the solution of (1.1) and uh

be the solution of (3.16).
Then the best rate is obtained choosing r = h

3
6+α , and in this case

|u− uh|0 ≤ C(h1/4 + h
3−α
6+α ) ≤ Ch1/4,

where the constant C depend only on the coefficients, c1, and quantities from (B3)/(B1)2.

Proof. When α ∈ (0, 1), Lemma 4.3 still holds for the scheme (3.16), and in view of (3.19) we
have the following form of E,

E(K̃, h, r, ε) = C1K̃h(ε−1 + ε−2 + ε−3) + C2K̃hr
−α(1 + ε−1),

where the constant C1 and C2 are independent of h, r, ε. Let ur denote the solution of (2.2).
Theorem 4.1 and (“term-wise”) minimization in ε, lead to the bound

|ur − uh|0 ≤ C(h1/4 + r−αh+ r−
α
2 h

1
2 ),

where the constant C depend only on the coefficients, c1, and quantities from (B3)/(B1)2. In view
of Theorem 2.3 and the optimal choice of r, r = h

3
6+α , the result follows. �

Remark 4.8. Since 1
4 <

3−α
6+α < 1

2 for α ∈ (0, 1), there is no reduction of rate due to truncation of
the measure ν.

The case α ∈ (1, 2) is more difficult, since now also
∫

E
ηνr,R and hence b̃ in (3.17) blows up as

r → 0. As a consequence Theorem 4.1 can no longer be used directly. The convergence result is
the following:

Theorem 4.9 (Unbounded measure II). Assume (A1) – (A3), (B3) with α ∈ (1, 2), h ≤ 1, and
c0 ≥ c1 for both c1’s in Theorem 2.1 and Proposition 3.3. Let u be the solution of (1.2) and uh

be the solution of (3.17).
Then the best rate is obtained choosing r = h

3
3+5α , and in this case

|u− uh|0 ≤ Ch
3−α
3+5α ,

where the constant C depend only on the coefficients, c1, and quantities from (B3)/(B1)2.

Remark 4.10. This result is consistent with Theorem 4.7 since lim
α→1+

3−α
3+5α = 1

4 . For α ∈ (1, 2) the

rate degrades as α increases, and lim
α→2−

3−α
3+5α = 1

13 .

Outline of proof. From Proposition 3.3 we have uniform in r Lipschitz continuity, but the contin-
uous dependence estimates will be proportional to

∫
E
|z|νr,R through the b̃-term. Because of this

we must redo the arguments leading to Theorem 4.1, and the result will be an estimate of the
form

|ur − uh| ≤ Cmin
ε>0

(
ε

∫
E

|z|νr,R + E1(K̃, h, r, ε)
)

in RN ,

when ur solve (2.6). We omit the details, since the argument is same as the one used to prove
Theorem 4.1 in [30]. Because of the blow up in

∫
E
ηνr,R, we also need a much more precise

consistency relation than given in Proposition 3.1 (iv) tracking all b̃ dependence. From the proof
of Proposition 3.1, it is easy to see that it will have the following form

E(K̃, h, ε) = C1K̃
[
h|b̃|20ε−1 + (h2|b̃|30 + h|b̃|0)ε−2 + (h+ h3|b̃|40 + h2|b̃|20)ε−3

]
+ C2K̃λrh

[
|b̃|0 + ε−1

]
+ C3K̃λrh

[ ∫
E

ηνr,R

]
,
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where the constants C1, C2, C3 only depend on supv |σ̄|0. In view of (3.19), λr = Cr−α and
|b̃|0 +

∫
E
|z|νr,R ≤ C(1+ rα−1). The rest of the proof is a long computation consisting of choosing

optimal ε and r as in the proof of Theorem 4.7. We omit the details only remarking that the worst
term in E turns out to be the hε−3-term. �

Appendix A. Lipschitz regularity and continuous dependence

In this section we obtain a combined Lipschitz regularity and continuous dependence result for
solutions to the equation

uh(x) = inf
v∈V

{
hf(x, v) + e−hc(x,v)

[e−hλ

2d

d∑
m=1

(
uh(x+ hb(x, v) +

√
hσm(x, v))+(A.1)

+ uh(x+ hb(x, v)−
√
hσm(x, v)

)
+

1− e−hλ

λ

∫
E

uh(x+ η(x, v, z))ν(dz)
]}
,

where λ = ν(E) and

b̄ = b+
1− e−hλ

λe−λh

∫
E

ην.

Theorem A.1. Let uh and ũh be solutions of (A.1) corresponding to the data σ, b̄, c, f, η, ν and
σ̃,

¯̃
b, c̃, f̃ , η̃, ν respectively, and assume both sets of coefficients satisfy (A1) – (A3) and (B1)0, and

that hλ ≤ C and h ≤ 1. Then there exist constants c1, L,K ≥ 0 (only depending on the data and
C) such that if c0 ≥ c1, then for all h > 0, x, y ∈ RN ,

|uh(x)− ũh(y)| ≤ L|x− y|+K sup
v∈V

[
|f − f̃ |0 + |c− c̃|0

+ |b− b̃|0 + |σ − σ̃|0 + |
∫
|η(·, z)− η̃(·, z)|2ν(dz)|1/2

0

]
.

Remark A.2. The precise dependence of the constants c1, L,K is given in the proof below.

Remark A.3. This result extends the corresponding results of [5] to non-local HJB equations, with
general (singular) Levy measures. Moreover, the proof below simplifies the corresponding proofs
of Barles and Jakobsen [5] because we do not use the somewhat unnatural “doubling schemes” as
in [5]. Instead we give a more direct proof.

Proof. We will use doubling of variables techniques similar to those used to prove corresponding
results for equation (1.1). We define

φ(x, y) = m+ αM +
L

2
(α−1 + α|x− y|2) + ε(|x|2 + |y|2),

ψ(x, y) = uh(x)− ũh(y)− φ(x, y),

for α, ε > 0, m,M,L ≥ 0, and then we let (x̄, ȳ) be a point such that ψ(x̄, ȳ) = supx,y ψ(x, y). We
will prove that ψ(x̄, ȳ) ≤ o(1) as ε→ 0 for a suitable constant L, and for

m =
(ec0h − 1

h

)−1

sup
v∈V

e|c|0∨|c̃|0h
[
|f − f̃ |0 + (|uh|0 ∧ |ũh|0 + h|f |0 ∧ |f̃ |0)|c− c̃|0

]
,(A.2)

M = K
(ec0h − 1

h

)−1

sup
v∈V

[
|σ − σ̃|20 + |b− b̃|20 + |

∫
|η(·, z)− η̃(·, z)|2ν(dz)|0

]
.(A.3)

This implies Theorem A.1 after sending ε→ 0. To see this, fix x, y and note that for any α > 0,

uh(x)− ũh(y)−m− αM − L

2
(α−1 + α|x− y|2) ≤ ψ(x̄, ȳ) + ε(|x|2 + |y|2) ≤ o(1) as ε→ 0.

In this inequality we send ε→ 0 and choose α−1 = |x− y| ∨ (2M/L)1/2 to obtain

uh(x)− ũh(y) ≤ m+ 2(LM)1/2 + L|x− y|,

and hence Theorem A.1 follows since x, y were arbitrary.
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For simplicity we will not be explicit about the form of the ε-terms appearing in the computa-
tions below. The role of these terms is only to guaranty that the maximum is attained at a point
(x̄, ȳ), and they vanish in the final estimate when ε→ 0. We refer to the proof of Theorem 3.4 in
[5] for details concerning the ε-terms.

We proceed by contradiction assuming that ψ(x̄, ȳ) > o(1) as ε→ 0. Note that by the definition
of ψ this implies that uh(x̄) − uh(ȳ) > 0. Furthermore, observe that since (x̄, ȳ) is a maximum
point,

ψ(x̄+ b+ a, ȳ + b̄+ ā) + ψ(x̄+ b− a, ȳ + b̄− ā) ≤ 2ψ(x̄, ȳ),

ψ(x̄+ ζ, ȳ + ζ̄) ≤ ψ(x̄, ȳ),

for every a, b, ζ, ā, b̄, ζ̄ ∈ RN , and hence by the definition of ψ,

I1 := [uh(x̄+ b+ a)− 2uh(x̄) + uh(x̄+ b− a)]

− [ũh(ȳ + b̄+ ā)− 2ũh(ȳ) + ũh(ȳ + b̄− ā)]

≤ φ(x̄+ b+ a, ȳ + b̄+ ā)− 2φ(x̄, ȳ) + φ(x̄+ b− a, ȳ + b̄− ā),

I2 := [uh(x̄+ ζ)− uh(x̄)]− [ũh(ȳ + ζ̄)− ũh(ȳ)] ≤ φ(x̄+ ζ, ȳ + ζ̄)− φ(x̄, ȳ).

Finally, by the definition of φ and the simple identities

|x̄+ b± a− (ȳ + b̄± ā)|2 = |x̄± a− (ȳ ± ā)|2 + 2(x̄± a− (ȳ ± ā)) · (b− b̄) + |b− b̄|2,
|x̄− ȳ + (a− ā)|2 − 2|x̄− ȳ|2 + |x̄− ȳ − (a− ā)|2 = 2|a− ā|2,

we are lead to

I1 ≤ 2
L

2
α|a− ā|2 + 2

L

2
α|b− b̄|2 + 4

L

2
α(x̄− ȳ, b− b̄) + o(1) as ε→ 0,(A.4)

I2 ≤ 2
L

2
α(x̄− ȳ, ζ − ζ̄) +

L

2
α|ζ − ζ̄|2 + o(1) as ε→ 0.(A.5)

These two inequalities are crucial for the rest of the proof.
Now we divide (A.1) by he−hc and rewrite it as

0 = sup
v∈V

{ehc − 1
h

uh(x)− ehcf(x, v)

− e−hλ

2dh

d∑
m=1

(
uh(x+ hb(x, v) +

√
hσm(x, v))− 2uh(x) + uh(x+ hb(x, v)−

√
hσm(x, v)

)
− 1− e−hλ

λh

∫
E

(
uh(x+ η(x, v, z))− uh(x)

)
ν(dz)

}
.

Upon subtracting the equations (in this new form) for ũh and uh, we get

0 ≤ sup
v∈V

{ec̃h − 1
h

ũh(ȳ)− ech − 1
h

uh(x̄)

+ [echf(x̄, v)− ec̃hf̃(ȳ, v)] +
e−hλ

2dh

d∑
m=1

I1,m +
1− e−hλ

λh

∫
E

I2ν(dz)
}
,

where I1,m corresponds to I1 above with the choice a =
√
hσm(x̄, v), b = hb(x̄, v), ā =

√
hσ̃m(ȳ, v),

and b̄ = h
¯̃
b(ȳ, v), and for I2 we have taken ζ = η(x̄, v, z) and ζ̄ = η(ȳ, v, z). By (A.4) and (A.5)
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we then have

0 ≤ sup
v∈V

{ec̃h − 1
h

ũh(ȳ)− ech − 1
h

uh(x̄)

+ [echf(x̄, v)− ec̃hf̃(ȳ, v)] +
e−hλ

2h
L

2
α
[1
d

d∑
m=1

2h|σm(x̄, v)− σ̃m(ȳ, v)|2

+ 2h2|b̄(x̄, v)− ¯̃
b(ȳ, v)|2 + 4h(x̄− ȳ, b̄(x̄, v)− ¯̃

b(ȳ, v))
]

+ e−hc 1− e−hλ

λh

L

2
α

∫
E

[
|η(x̄, v, z)− η̃(ȳ, v, z)|2 + 2

(
x̄− ȳ, η(x̄, v, z)− η̃(ȳ, v, z)

)]
ν(dz)

}
+ o(1) as ε→ 0.

Since b̄ = b+ 1−e−hλ

λe−λh

∫
E
ην and ¯̃

b is defined similarly we see that the (x̄− ȳ, η− η̃)-terms cancel in
the above inequality. Since ν(E) = λ, Jensen’s inequality implies that

λ2
∣∣∣ ∫

E

(η(x̄, v, z)− η̃(ȳ, v, z))
ν(dz)
λ

∣∣∣2 ≤ λ2

∫
E

|η(x̄, v, z)− η̃(ȳ, v, z)|2 ν(dz)
λ

.

Also note that since uh(x̄)− ũh(ȳ) > 0 and c ≥ c0 > 0,

ec̃h − 1
h

ũh(ȳ)− ech − 1
h

uh(x̄) ≤ −e
c0h − 1
h

[uh(x̄)− ũh(ȳ)] +
|ec̃h − ech|

h
|̃uh(x̄)| ∧ |uh(ȳ)|.

Therefore after cancellations, Jensen’s inequality, and the inequality 1−e−hλ

λe−λh ≤ hehλ, we get

ec0h − 1
h

[uh(x̄)− ũh(ȳ)]

≤ sup
v∈V

{
e|c|0∨|c̃|0h

[
|f(x̄, v)− f̃(ȳ, v)|+ (|uh|0 ∧ |ũh|0 + h|f |0 ∧ |f̃ |0)|c(x̄, v)− c̃(ȳ, v)|

]
+
e−hλ

2h
L

2
α
[1
d

d∑
m=1

2h|σm(x̄, v)− σ̃m(ȳ, v)|2

+ 4h2|b(x̄, v)− b̃(ȳ, v)|2 + 4h(x̄− ȳ, b(x̄, v)− b̃(ȳ, v))
]

+
1− e−hλ

λh

L

2
α

∫
E

[
4h2λheλh

∫
E

|η(x̄, v, z)− η̃(ȳ, v, z)|2ν(dz)

+ |η(x̄, v, z)− η̃(ȳ, v, z)|2
]
ν(dz)

}
+ o(1) as ε→ 0.
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Now since λh ≤ C and h < 1, it follows from simple computations that

ec0h − 1
h

[ψ(x̄, ȳ) + φ(x̄, ȳ)] =
ec0h − 1

h
[uh(x̄)− ũh(ȳ)]

≤ sup
v∈V

{
e|c|0∨|c̃|0h

[
|f − f̃ |0 + (|uh|0 ∧ |ũh|0 + h|f |0 ∧ |f̃ |0)|c− c̃|0

]
︸ ︷︷ ︸

ec0h−1
h m

+
L

2
α
e−hλ

2

[1
d

d∑
m=1

4|σm − σ̃m|20 + 16h|b− b̃|20
]

+
L

2
α5CeC |

∫
E

|η(·, v, z)− η̃(·, v, z)|2ν(dz)|0
}

+ sup
v∈V

{
e|c|0∨|c̃|0h

[
Lf + (|uh|0 ∧ |ũh|0 + h|f |0 ∧ |f̃ |0)Lc

]
︸ ︷︷ ︸

L

1
2
(α−1 + α|x̄− ȳ|2)

+
L

2
α|x̄− ȳ|2

(e−hλ

2

[1
d

d∑
m=1

4L2
σ + 16hLb + 8

]
+ 5CeCL2

η

∫
E

|z|2ν(dz)
)

︸ ︷︷ ︸
L0

}

+ o(1) as ε→ 0.

Let L,L0 be defined as in the inequality above. If c0 is so big that

ec0h − 1
h

− L0 > 0,

and we choose m,M as in (A.2) and (A.3) for K big enough, and

L =
L

ec0h−1
h − L0

,

then ψ(x̄, ȳ) ≤ o(1) as ε→ 0 and the proof is complete. �
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