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Abstract. We obtain new L1 contraction results for bounded entropy solu-

tions of Cauchy problems for degenerate parablic equations. The equations we
consider have possibly strongly degenerate local or non-local diffusion terms.

As opposed to previous results, our results apply without any integrability

assumption on the (difference of) solutions. They take the form of partial
Duhamel formulas and can be seen as quantitative extensions of finite speed

of propagation local L1 contraction results for scalar conservation laws. A

key ingredient in the proofs is a new and non-trivial construction of a subso-
lution of a fully non-linear (dual) equation. Consequences of our results are

new a priori estimates, new maximum and comparison principles, and in the
non-local case, new existence and uniqueness results.

1. Introduction

In this paper we consider the following Cauchy problem:

(1.1)

ut + div f(u)− Lϕ(u) = g(x, t) in QT := Rd × (0, T ),

u(x, 0) = u0(x) in Rd,

where u = u(x, t) is the solution, T > 0, div is the x-divergence. The operator L
will either be the x-Laplacian ∆, or a non-local operator Lµ defined on C∞c (Rd) as

(1.2) Lµ[φ](x) :=

ˆ
Rd\{0}

φ(x+ z)− φ(x)− z ·Dφ(x)1|z|≤1 dµ(z),

where µ is a positive Radon measure, D the x-gradient, and 1|z|≤1 the characteristic
function of |z| ≤ 1. Throughout the paper we assume that:

f = (f1, f2, . . . , fd) ∈W 1,∞
loc (R,Rd);(Af )

ϕ ∈W 1,∞
loc (R) and ϕ is nondecreasing (ϕ′ ≥ 0);(Aϕ)

g ∈ L1((0, T );L∞(Rd));(Ag)

u0 ∈ L∞(Rd);(Au0)

µ ≥ 0 is a Radon measure on Rd \ {0}, and there is M ≥ 0 such that(Aµ) ˆ
|z|≤1

|z|2 dµ(z) +

ˆ
|z|>1

eM |z| dµ(z) <∞.

Assumption (Aµ) holds with M > 0.(A+
µ )

Remark 1.1. Without loss of generality, we can assume f(0) = 0 and ϕ(0) = 0 (by
adding constants to f and ϕ) and f and ϕ are globally Lipschitz (since solutions
are bounded). (Aµ) implies that

´
|z|>0

|z|2∧1 dµ(z) <∞ and µ is a Lévy measure.

Key words and phrases. Degenerate parabolic equations, L1 contraction, entropy solutions;
non-local/fractional equation, equations of mixed hyperbolic/parabolic type, fractional Laplacian,
a priori estimates, uniqueness, existence.
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Equation (1.1) is a degenerate parabolic equation. It can be strongly degenerate,
i.e. ϕ′ may vanish/degenerate on sets of positive measure. Equation (1.1) can
therefore be of mixed hyperbolic parabolic type. The equation is local when L = ∆
and non-local when L = Lµ. In the latter case, it is an anomalous diffusion equation:
When (Aµ) holds, Lµ is the generator of a pure jump Lévy process, and conversely,
any pure jump Lévy process has a generator like Lµ. An example is the isotropic
α-stable process for α ∈ (0, 2). Here the generator is the fractional Laplacian
−(−∆)

α
2 , which can be defined as a Fourier multiplier, or equivalently, via (1.2)

with dµ(z) = cα
dz
|z|d+α for some cα > 0 [6, 23]. If also (A+

µ ) holds, then Lµ is the

generator of a tempered α-stable process [17]. Almost all Levy processes in finance
are of this type. For more details and examples of non-local operators, we refer to
[6, 17].

A large number of physical and financial problems are modeled by convection-
diffusion equations like (1.1). Being very selective we mention reservoir simulation
[24], sedimentation processes [11], and traffic flow [36] in the local case; detonation
in gases [16], radiation hydrodynamics [33, 34], and semiconductor growth [37] in
the non-local case; and porous media flow [35, 20] and mathematical finance [17]
in both cases.

Let us give the main references for the well-posedness of the Cauchy problem for
(1.1), starting with the most classical case L = ∆. For a more complete bibliog-
raphy, see the books [21, 19, 35] and the references in [28]. In the hyperbolic case
where ϕ′ ≡ 0, we get the scalar conservation law ∂tu+divf(u) = 0. The solutions of
this equation could develop discontinuities in finite time and the weak solutions of
the Cauchy problem are generally not unique. The most famous uniqueness result
relies on the notion of entropy solutions introduced in [31]. In the pure diffusive
case where f ′ ≡ 0, there is no more creation of shocks and the initial-value problem
for ∂tu − 4ϕ(u) = 0 admits a unique weak solution, cf. [10]. Much later, the
adequate notion of entropy solutions for mixed hyperbolic parabolic equations was
introduced in [12]. This paper focuses on an initial-boundary value problem. For
a general well-posedness result applying to the Cauchy problem (1.1) with L = ∆,
we refer to e.g. [28] and [5, 32].

At the same time, there has been a large interest in non-local versions of these
equations (where L = Lµ). The study of non-local diffusion terms was probably
initiated by [8]. Now, the well-posedness is quite well-understood in the nonde-
generate linear case where ϕ(u) = u. Smooth solutions exist and are unique for
subcritical equations [8, 22], shocks could occur [4, 30] and weak solutions could
be nonunique [2] for supercritical equations, entropy solutions exist and are always
unique [1, 29]; cf. also e.g. [13] for original regularizing effects. Very recently, the
well-posedness theory of entropy solutions was extended in [14] to cover the full
problem (1.1), even for strongly degenerate ϕ. See also [20, 9] on fractional porous
medium type equations.

In all the papers on entropy solutions, the authors use doubling of variables
arguments inspired by Kruzkov to prove L1 contraction estimates. For entropy
solutions u and v, the typical estimate when g = 0 isˆ

Rd
(u(x, t)− v(x, t))+ dx ≤

ˆ
Rd

(u(x, 0)− v(x, 0))+ dx.(1.3)

From such an estimate the maximum or comparison principle follows: If u(x, 0) ≤
v(x, 0) a.e., then u(x, t) ≤ v(x, t) for all t > 0 and a.e. x. A priori estimates
for the L1, L∞, and BV norms of the solutions also follow, estimates which are
important e.g. to show existence, stability, and convergence of approximations.
However, due to the global nature of this contraction estimate, it only applies for
entropy solutions whose difference u− v belong to L1. In particular, in the case of
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arbitrary bounded solutions of (1.1), this estimate can not be used to obtain the
maximum/comparison principles or the BV estimates that are expected to hold
here. Some of the previous results also need the further restriction that solutions
belong to L1 ∩ L∞, see [28, 14]. In particular, prior to this paper, there were no
well-posedness results for merely bounded solutions of the non-local variant of (1.1)
when ϕ is non-linear.

In this paper we obtain new L1 contraction results for (1.1). The estimates
are more local than (1.3) and take the form of a “partial Duhamel formula” (see
equation (2.8)),

ˆ
B(x0,M)

(u(x, t)− v(x, t))+ dx ≤
ˆ
B(x0,M+1+Lt)

Φ̃(·, t) ∗
(
u(·, 0)− v(·, 0)

)+
(x) dx,

(1.4)

for all x0 ∈ Rd and M > 0, some L, and some integrable function Φ̃. See Section
2 for the precise statements. In (1.4), there is no need to take u− v ∈ L1, and we
will prove that the result applies to arbitrary bounded entropy solutions u, v. In
addition to this new and more quantiative form of the L1 contraction, we obtain
as consequences new maximum/comparison principles and BV estimates for both
local and non-local versions of (1.1), and in the non-local case, we obtain the first
well-posedness result to hold for merely bounded entropy solution of (1.1).

Estimate (1.4) can be seen as a quatitative extension of the finite speed of prop-
agation type of estimate that holds for scalar conservation laws [31, 19]. A similar
(Duhamel type) result has already been obtained for fractional conservation laws
in [1]. See also [22, 23] for more Duhamel formulas for fractional conservation laws.
The proof in [1] consists in establishing a so-called Kato inequality for the equation,
making a clever choice of the test function to have cancellations, and then conclude
in a fairly standard way. Even if it is not written like that, the test function is
chosen to be a subsolution of a sort of dual equation that appears from the Kato
inequality. In [1] the principal part of the “dual equation” is the (linear) fractional
heat equation which can be solved exactly using the fundamental solution. The test
function is therefore defined via a Duhamel like formula involving the fractional heat
kernel (the function Φ̃ in this case).

In this paper we formalize this proceedure and apply it to the more difficult prob-
lems with non-linear degenerate diffusions. To do that, we derive Kato inequalities
for bounded entropy solutions and identify the usefull “dual equations” from them.
In the general case we find that the “dual equations” are fully non-linear degenerate
parabolic equations. These equations do not have smooth solutions in general, but
we then prove that there exists bounded continuous generalized solutions (viscosity
solutions) that belong to L1. After several regularization proceedures and Duhamel
type of formulas, we produce a test function that gives the necessary cancelations.
Since this test function is not based on a fundamental solution, or any Φ̃ which is
mass preserving, we can only conclude after an additional approximation steps.

In effect we have introduced a new way of obtaining L1 contraction estimates for
degenerate parabolic equations. The new proof exploits a “dual equation” which in
this case is pretty bad too, a degenerate fully non-linear equation that can be best
analyzed through the theory of viscosity solutions [18]. The proof can therefore be
seen as a sort of duality argument, and it is as far we know, the first proof were
viscosity solution methods were used as a key ingredient in a contraction proof for
entropy solutions.

The rest of this paper is organised as follows: In Section 2, we give the defini-
tions of entropy solutions and present and discuss our main results. Their main
consequences are discussed in Section 3. In Section 4, we derive Kato type and
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other auxiliary inequalities. And finally, in Section 5, we give the proofs of our
main results.

Notation. For x ∈ R, we let x+ = max{x, 0}, x− = (−x)+, and sign(x) is ±1 for
±x > 0 and 0 for x = 0. We let B(x, r) = {y ∈ Rd : |x− y| < r}, and the indicator
function 1A is 1 on the set A and 0 otherwise. By Lφ and suppφ we denote the

Lipschitz constant and support of a function φ, derivatives are denoted by ′, d
dt ,

∂xi , and Dφ and D2φ denote the x gradient and Hessian matrix of φ. Convolution
is defined as f ∗ g(x) =

´
Rd f(x − y)g(y) dy. If µ is a Borel measure, then µ∗ is

defined as µ∗(B) = µ(−B) for all Borel sets on Rd \{0}. The adjoint of an operator
L is denoted by L∗, and the reader may check that (Lµ)∗ = Lµ∗ .

We use standard notation for Lp, BV , and H1 spaces, Cb and C∞c are the spaces
of bounded continuous functions and smooth functions with compact support. We
use the following norms and semi-norms:

‖φ‖C([0,T ];L1(Rd)) := ess sup
t∈[0,T ]

ˆ
Rd
|φ(x, t)|dx,

|ψ|BV (Rd) := sup
h 6=0

ˆ
Rd

|ψ(x+ h)− ψ(x)|
|h|

dx,

|φ|L1(0,T ;BV (Rd)) :=

ˆ T

0

|φ(·, t)|BV (Rd) dt,

‖φ‖L1(0,T ;L∞(Rd)) :=

ˆ T

0

‖φ(·, t)‖L∞(Rd) dt.

The | · |BV semi-norm is equivalent to standard definition of the total variation, see
[25, Lemma A.1] or [3, Lemma A.2]. We let C([0, T ];L1(Rd)), L1(0, T ;BV (Rd)),
L1(0, T ;L∞(Rd)) be the associated Bochner spaces. The space C([0, T ];L1

loc(Rd))
is the space of measurable functions u : Rd×[0, T ]→ R satisfying u(·, t) ∈ L1

loc(Rd))
for every t ∈ [0, T ], maxt∈[0,T ]

´
K
|u(x, t)|dx <∞, and

´
K
|u(x, t)− u(x, s)|dx→ 0

when t→ s for all compact K ⊂ Rd and s ∈ [0, T ]. In a similar way we also define
L1((0, T );BVloc(Rd)). For the rest of the paper we fix two families of mollifiers
ωε, ρε defined by

ωε(σ) :=
1

ε
ω(
σ

ε
)(1.5)

for fixed 0 ≤ ω ∈ C∞c (R) satisfying suppω ⊆ [−1, 1], ω(σ) = ω(−σ),
´
ω = 1; and

ρδ(σ, τ) :=
1

δd+2
ρ(
σ

δ
,
τ

δ2
)(1.6)

for fixed 0 ≤ ρ ∈ C∞c (QT ), supp ρ ⊆ B(0, 1)× (0, 1), ρ(σ, τ) = ρ(−σ,−τ),
´
ρ = 1.

2. Entropy formulation and main results

In this section we give the definitions of entropy solutions of (1.1) and then
present our main results. We will use the following splitting

Lµ[φ](x) = Lµr [φ](x) + Lµ,r[φ](x) + bµ,r ·Dφ(x),

for φ ∈ C∞c (QT ), r > 0 and x ∈ Rd, where

Lµr [φ](x) :=

ˆ
0<|z|≤r

φ(x+ z)− φ(x)− z ·Dφ1|z|≤1 dµ(z),

Lµ,r[φ](x) :=

ˆ
|z|>r

φ(x+ z)− φ(x) dµ(z),

bµ,r :=−
ˆ
|z|>r

z1|z|≤1 dµ(z).
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We also need the Kružkov entropy-entropy flux pairs, ηk(u) = |u−k| and qf (u, k) =
sign(u− k)(f(u)− f(k)) for all k ∈ R, and the corresponding semi entropy-entropy
flux pairs, η

±
k (u) = (u− k)± ∀k ∈ R

q±f (u, k) = ±sign(u− k)±(f(u)− f(k)) ∀k ∈ R.

Note that since ϕ′ ≥ 0, it follows that η±ϕ(k)(ϕ(u)) = (ϕ(u)− ϕ(k))±.

Definition 2.1 (Entropy solutions). Let L = ∆. A function u ∈ L∞(QT ) ∩
C([0, T ];L1

loc(Rd)) is

a) an entropy subsolution of (1.1) if
i) for all non-negative φ ∈ C∞c (QT ) and all k ∈ R¨

QT

(u− k)+φt + sign(u− k)+[f(u)− f(k)] ·Dφ dxdt

+

¨
QT

(ϕ(u)− ϕ(k))+∆φ dxdt

+

¨
QT

sign(u− k)+g φ dxdt ≥ 0;

(2.1)

ii) ϕ(u) ∈ L2((0, T );H1
loc(Rd));

iii) u(·, 0) ≤ u0 for a.e. x ∈ Rd.
b) an entropy supersolution of (1.1) if

i) for all non-negative φ ∈ C∞c (QT ) and all k ∈ R¨
QT

(u− k)−φt − sign(u− k)−[f(u)− f(k)] ·Dφ dxdt

+

¨
QT

(ϕ(u)− ϕ(k))−∆φ dxdt

+

¨
QT

− sign(u− k)−g φ dxdt ≥ 0;

(2.2)

ii) ϕ(u) ∈ L2((0, T );H1
loc(Rd));

iii) u(·, 0) ≥ u0 for a.e. x ∈ Rd.
c) an entropy solution of (1.1) if it is both and entropy subsolution and an entropy

supersolution.

Definition 2.2 (Entropy solutions). Let L = Lµ. A function u ∈ L∞(QT ) ∩
C([0, T ];L1

loc(Rd)) is

a) an entropy subsolution of (1.1) if
i) for all non-negative φ ∈ C∞c (QT ) and all k ∈ R

¨
QT

(u− k)+∂tφ+ sign(u− k)+[f(u)− f(k)] ·Dφ dxdt

+

¨
QT

(ϕ(u)− ϕ(k))+
(
Lµ
∗

r [φ] + bµ
∗,r ·Dφ

)
+ sign(u− k)+Lµ,r[ϕ(u)]φ dx dt

+

¨
QT

sign(u− k)+g φ dxdt ≥ 0;

(2.3)

ii) u(·, 0) ≤ u0(·) for a.e. x ∈ Rd.
b) an entropy supersolution of (1.1) if
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i) for all non-negative φ ∈ C∞c (QT ) and all k ∈ R

¨
QT

(u− k)−∂tφ− sign(u− k)−[f(u)− f(k)] ·Dφ dxdt

+

¨
QT

(ϕ(u)− ϕ(k))−
(
Lµ
∗

r [φ] + bµ
∗,r ·Dφ

)
− sign(u− k)−Lµ,r[ϕ(u)]φ dxdt

+

¨
QT

− sign(u− k)−g φ dxdt ≥ 0;

(2.4)

ii) u(·, 0) ≥ u0(·) for a.e. x ∈ Rd.
c) an entropy solution of (1.1) if it is both an entropy subsolution and an entropy

supersolution.

Remark 2.1. a) Similar definitions are given e.g. in [32, Definition 3.4] and [14,
Definition 5.1].

b) Since an entropy solution u ∈ C([0, T ];L1
loc(Rd)) and u(·, 0) = u0(·) a.e., the

initial condition is imposed in a strong sense: u(·, t)→ u0(·) in L1
loc as t→ 0+.

c) By (Af ), (Aϕ), and u ∈ L∞(QT ), η±k (u), (η±k )′(u), q±f (u, k), and η±ϕ(k)(ϕ(u)) are

all in L∞(QT ).
d) By c) and (Ag), all integrals in (2.1) and (2.2) are well-defined.
e) By c) and (Ag), the first and third integral in (2.3) and (2.4) are well-defined.

Since Lµ∗r [φ] ∈ C∞c (QT ) for φ ∈ C∞c (QT ) and Lµ,r[ϕ(u)] ∈ L∞(QT ) for ϕ(u) ∈
L∞(QT ), then by c) the second integral is also well-defined. Since u is a Lebesgue
measurable function, it is not immediatly clear that ϕ(u) is µ-measurable and
Lµ,r[ϕ(u)] is point-wisely well-defined. We refer to Remark 2.1 and Lemma 4.2
in [3] for a discussion and proof that this is actually the case.

Lemma 2.2. u(x, t) is an entropy solution of (1.1) in the sense of Definition 2.1
or 2.2 if and only if u(x, t) is an entropy solution in the usual sense.

Proof. Since |u−k| = (u−k)++(u−k)− and sign(u−k) = sign(u−k)+−sign(u−k)−,

(2.1) + (2.2) or (2.3) + (2.4)

⇓

|u− k|t + div
(

sign(u− k)[f(u)− f(k)]
)
− L

∣∣ϕ(u)− ϕ(k)
∣∣− sign(u− k)g ≤ 0

in D′(QT ), which is the usual definition in terms of Kružkov entropy-entropy fluxes.
Part a) of Definitions 2.2 and 2.1 can be obtained from the usual definition in a

similar way. First we check that u− k satify

(u− k)t + div
(
f(u)− f(k)

)
− L

(
ϕ(u)− ϕ(k)

)
− g = 0 in D′(QT ).

Then we add this equation to the entropy inequality for u. Since this inequality
involves the Kružkov flux |u− k|, the result follows by the following identities

|u− k|+ (u− k) = 2(u− k)+,

sign(u− k)(f(u)− f(k)) +
(
f(u)− f(k)

)
= 2 sign(u− k)+(f(u)− f(k)),

and a similar one for the ϕ(u)-terms. The proof of part b) is similar. �

Main results. To give the main results, we introduce the functions K̃ and Φ. We
define

(2.5) K̃(x, t) = F−1(e−t|2πξ|
α

)(x) for α ∈ (0, 2],
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where F(φ)(ξ) =
´
Rd e−2πiξ·xφ(x) dx. Then K̃ is a fundamental solution satifying∂tK̃ − L∗K̃ = 0, t > 0,

K̃(x, 0) = δ0,

for L∗ = L = −(−∆)
α
2 , where δ0 is the Dirac measure centred at the origin.

Furthermore, Φ is the (non-smooth viscosity) solution of

(2.6)

∂tΦ− (L∗Φ)+ = 0 in Rd × (0, T̃ ),

Φ(x, 0) = Φ0(x) in Rd,

for some Φ0 ∈ C∞c (Rd).
Lemma 2.3. Let K̃ be defined by (2.5), then it has the following properties

i) K̃ is non-negative, smooth, and bounded for t > δ for all δ > 0;

ii)
´
Rd K̃(x, t) dx = 1;

iii) {K̃(·, t)}t>0 is an approximate unit as t→ 0;

iv) K̃(x, t) = K̃(−x, t) for all t > 0 and x ∈ Rd.

This result is classical and can be found in e.g. [1].

Lemma 2.4. Assume (Af ), (Aϕ), (Ag) hold, that L = ∆ or L = Lµ and (A+
µ )

holds, and that 0 ≤ Φ0 ∈ C∞c (QT ). Let T̃ := max{T, LϕT} where Lϕ is the
Lipschitz constant of ϕ. Then there exists a unique viscosity solution Φ(x, t) of
(2.6) such that

0 ≤ Φ ∈ Cb(QT̃ ) ∩ C([0, T̃ ];L1(Rd)).
We prove this lemma in Section 5. Note that viscosity solutions are the right

type of weak solutions for fully non-linear and degenerate equations like (2.6), see
e.g. [18, 26].

Remark 2.5. When L is self-adjoint (that is, when L = ∆ or L = Lµ with µ
symmetric), we may assume that Φ(−x, t) = Φ(x, t). Simply take a symmetric Φ0

and the solution of (2.6) has this property.

Before the main theorems are given, we revisit some of the known results in
special cases.

Theorem 2.6. Assume (Af ) holds, and ϕ = 0. Let u and v be entropy sub-
and supersolutions of (1.1) with initial data u0, v0 ∈ L∞(Rd) and source terms
g, h ∈ L1((0, T );L∞(Rd)) respectively. Then for all t ∈ (0, T ), M > 0 and x0 ∈ Rdˆ

B(x0,M)

(u(x, t)− v(x, t))+ dx ≤
ˆ
B(x0,M+Lf t)

(u0(x)− v0(x))+ dx

+

ˆ t

0

ˆ
B(x0,M+Lf (t−s))

(g(x, s)− h(x, s))+ dxds,

where Lf is the Lipschitz constant of f .

This is the classical local L1 contraction result for scalar conservation laws, see
e.g. Dafermos [19, p. 149] for a proof. The hyperbolic finite speed of propagation
property is encoded in the result.

In the linear non-local diffusion case, Alibaud [1] obtained the inequalityˆ
B(x0,M)

(u(x, t)− v(x, t))+ dx ≤
ˆ
B(x0,M+Lf t)

K̃(·, t) ∗ (u0 − v0)+(x) dx(2.7)

+

ˆ t

0

ˆ
B(x0,M+Lf (t−s))

K̃(·, t− s) ∗ (g(·, s)− h(·, s))+(x) dxds,
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where Lf is the Lipschitz constant of f . We state the result along with a new result
for the local case.

Theorem 2.7. Assume (Af ), ϕ(u) = u, and K̃ is defined by (2.5). Let t ∈ (0, T ),
M > 0, x0 ∈ Rd, and u and v be entropy sub- and supersolutions of (1.1) with initial
data u0, v0 ∈ L∞(Rd) and source terms g, h ∈ L1((0, T );L∞(Rd)) respectively.

(a) If L = −(−∆)
α
2 for α ∈ (0, 2), then the L1 contraction estimate (2.7) holds.

(b) If L = ∆ (α = 2), then the L1 contraction estimate (2.7) holds.

The result has the form of a partial Duhamel formula involving the fundamental
solution of the parabolic part of the equation (which is linear here). The proof of
(a) can be found in [1] when g = 0, and the extension to general g is easy. Part (b)
seems to be new, but essentially it follows from the argument of [1] and Proposition
4.2. The proof is given in Section 5.

Now we give our main results which is an L1 contraction estimate of the form

ˆ
B(x0,M)

(u(x, t)− v(x, t))+ dx ≤
ˆ
B(x0,M+1+Lf t)

Φ(−·, Lϕt) ∗ (u0 − v0)+(x) dx

(2.8)

+

ˆ t

0

ˆ
B(x0,M+1+Lf (t−s))

Φ(−·, Lϕ(t− s)) ∗ (g(·, s)− h(·, s))+(x) dx ds,

where Lf and Lϕ are the Lipschitz constants of f and ϕ respectively.

Theorem 2.8. Assume (Af ), (Aϕ) hold, and Φ is given by Lemma 2.4. Let
t ∈ (0, T ), M > 0, x0 ∈ Rd, and u and v be entropy sub- and supersolutions of
(1.1) with initial data u0, v0 ∈ L∞(Rd) and source terms g, h ∈ L1((0, T );L∞(Rd))
respectively.

(a) If L = Lµ and (A+
µ ) holds, then the L1 contraction estimate (2.8) holds.

(b) If L = ∆, then the L1 contraction estimate (2.8) holds.

The proof is given in Section 5. These results, the L1 contractions (2.7) and
(2.8), encode both the finite speed of propagation of the hyperbolic term and the
infinite speed of propagation of the parabolic term. As far as we know, this is the
first time such a partial Duhamel type L1 contraction result has been given for
non-linear diffusions.

Remark 2.9. a) Theorem 2.8 gives a stronger L1 contraction estimate than pre-
vious results [32, 5, 14], see the discussion in the introduction and the next
section.

b) Theorem 2.8 (a) is the first L1 contraction result for bounded solutions of (1.1)
with non-local L.

c) Theorems 2.8 (a) holds under assumption (A+
µ ) which is discussed in the intro-

duction. We do not know if this assumption can be relaxed. We use it to prove
that Φ(·, t) belongs to L1, a result which is needed for (2.8) to be well-defined
for merely bounded initial data and source term.

d) The +1-factor in B(x0,M + 1 + Lf t) in Theorem 2.8 depends on the choice of
Φ, and comes from the fact that Φ(x, t) is not an approximate unit as t → 0+.
In fact, it will have increasing mass (or L1-norm) in time.

3. Consequences

Using Theorem 2.8, we now derive new maximum and comparison principles,
new a priori estimates, and existence and uniqueness results for (1.1). The latter
results are new in the non-local case.
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Corollary 3.1. Assume (Af ) and (Aϕ) hold, (A+
µ ) holds when L = Lµ, and

u0, v0 ∈ L∞(Rd) and g, h ∈ L1((0, T );L∞(Rd)). Let M > 0, x0 ∈ Rd and Lf and
Lϕ be the Lipschitz constants of f and ϕ respectively.

a) (L1 contraction). Let u and v be entropy solutions of (1.1) with initial data
u0, v0 and source terms g, h respectively. Then for all t ∈ (0, T ),

‖u(·, t)− v(·, t)‖L1(B(x0,M)) ≤ ‖Φ(−·, Lϕt) ∗ |u0 − v0|‖L1(B(x0,M+1+Lf t))

+

ˆ t

0

‖Φ(−·, Lϕ(t− s)) ∗ |g(·, s)− h(·, s)|‖L1(B(x0,M+1+Lf (t−s))) ds.

b) (L1 bound). Let u be an entropy solution of (1.1). Then for all t ∈ (0, T ),

‖u(·, t)‖L1(B(x0,M)) ≤ ‖Φ(−·, Lϕt) ∗ |u0|‖L1(B(x0,M+1+Lf t))

+

ˆ t

0

‖Φ(−·, Lϕ(t− s)) ∗ |g(·, s)|‖L1(B(x0,M+1+Lf (t−s))) ds.

c) (Comparison principle). Let u and v be entropy sub- and supersolutions of (1.1)
with initial data u0, v0 and source terms g, h respectively. If u0 ≤ v0 a.e. in Rd
and g ≤ h a.e. in QT , then

u(x, t) ≤ v(x, t) a.e. in QT .

d) (Maximum principle). Let u be an entropy solution of (1.1). Then

inf
x∈Rd

u0(x) +

ˆ t

0

inf
x∈Rd

g(x, s) ds ≤ u(x, t) ≤ sup
x∈Rd

u0(x) +

ˆ t

0

sup
x∈Rd

g(x, s) ds

a.e. in QT .
e) (BV bound). Let u be an entropy solution of (1.1) and assume u0 ∈ BV (Rd)

and g ∈ L1((0, T );BV (Rd)). Then for all t ∈ (0, T ), x0 ∈ Rd, and M > 0,

|u(·, t)|BV (B(x0,M))

≤ sup
h6=0

‖Φ(−·, Lϕt) ∗ |u0(·+ h)− u0|‖L1(B(x0,M+1+Lf t))

|h|

+ sup
h6=0

´ t
0
‖Φ(−·, Lϕ(t− s)) ∗ |g(·+ h, s)− g(·, s)|‖L1(B(x0,M+1+Lf (t−s))) ds

|h|
≤ ‖Φ(·, Lϕt)‖L1(Rd)|u0|BV (Rd) + ‖Φ‖C([0,T ];L1(Rd))|g|L1((0,T );BV (Rd)).

Remark 3.2. The comparison principle, maximum principle, and BV bound are
new even in the local case. E.g. they can not follow from the results of [32, 5])
since these results require that (u0 − v0)+ ∈ L1(Rd).

Proof. a) By Theorem 2.8, estimate (2.8) holds. Interchanging the roles of u, g and
v, h, and using (v−u)+ = (u− v)− etc., we see that (2.8) holds for (u− v)− as well
as for (u− v)+. Hence a) follows.

b) Follows from a) with v = v0 = h = 0.

c) By the contraction estimate (2.8) and the assumptions on the initial data and
source terms, for all t > 0, x0 ∈ Rd, and M > 0,ˆ

B(x0,M)

(u(x, t)− v(x, t))+ dx ≤ 0.

Hence (u− v)+ = 0 and u ≤ v a.e. in QT .

d) Note that w(t) = supx∈Rd u0(x) +
´ t
0

supx∈Rd g(x, s) ds is an entropy superso-
lution of (1.1), and then u ≤ w a.e. by part c). In similar way the lower bound
follows.
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e) Since (1.1) is translation invariant, both u(x, t) and u(x + h, t) are entropy
solutions of (1.1) with initial data u0(x) and u0(x + h), and sources g(x, t) and
g(x+ h, t) respectively. By the definition of | · |BV and part a),

|u(·, t)|BV (B(x0,M))

= sup
h 6=0

‖u(·+ h, t)− u(·, t)‖L1(B(x0,M))

|h|

≤ sup
h 6=0

ˆ
B(x0,M+1+Lf t)

ˆ
Rd

Φ(−(x− y), Lϕt)
|u0(y + h)− u0(y)|

|h|
dy dx

+ sup
h6=0

ˆ t

0

ˆ
B(x0,M+1+Lf (t−s))

ˆ
Rd

Φ(−(x− y), Lϕ(t− s))

· |g(y + h, s)− g(y, s)|
|h|

dy dxds.

By Tonelli’s theorem and Lemma 2.4, this term is bounded by

sup
h 6=0

ˆ
Rd

|u0(y + h)− u0(y)|
|h|

ˆ
Rd

Φ(−(x− y), Lϕt) dx dy

+

ˆ t

0

sup
h6=0

ˆ
Rd

|g(y + h, s)− g(y, s)|
|h|

ˆ
Rd

Φ(−(x− y), Lϕ(t− s)) dx dy ds

≤ ‖Φ(·, Lϕt)‖L1(Rd)|u0|BV (Rd) + ‖Φ‖C([0,T̃ ];L1(Rd))|g|L1((0,T );BV (Rd)).

�

Theorem 3.3 (Existence and uniqueness). Assume that (Af ), (Ag), (Aϕ), and
(Au0

) hold, and

L = ∆ or L = Lµ and (A+
µ ) holds.

a) There is at most one entropy solution of the initial value problem (1.1).
b) There exists an entropy solution of the initial value problem (1.1).

Proof. In the local case this result was proved in [32, Theorem 3.7]. In the non-
local case, uniqueness in part a) is an immediate consequence of Theorem 2.8 with
u0 = v0 and g = h, and the existence result in part b) follows from existence results
for L1 ∩ L∞ solutions [14, 15] and the L1 contraction of Theorem 2.8. We do the
proof under the simplifying assumption that g = 0. It is not hard to extend the
proof to the general case.

Take functions u0,n ∈ L∞(Rd) ∩ L1(Rd) such that

(3.1) ‖u0,n‖L∞(Rd) ≤ ‖u0‖L∞(Rd) and u0,n → u0 in L1
loc(Rd) and pointwise a.e.

By [14, 15], there exists entropy solutions um, un of (1.1) with initial data u0,m, u0,n
respectively. By Theorem 2.8 and the triangle inequality,

‖um − un‖C([0,T ];L1(B(x0,M)))

≤ max
t∈[0,T ]

‖Φ(−·, Lϕt) ∗ |u0,m − u0|‖L1(B(x0,M+1+Lf t))

+ max
t∈[0,T ]

‖Φ(−·, Lϕt) ∗ |u0,n − u0|‖L1(B(x0,M+1+Lf t)).

The right-hand side of the inequality goes to zero by Lebesgue’s dominated con-
vergence theorem and (3.1) when n,m → ∞ (the integrand is dominated by
2Φ(−y, Lϕt)‖u0‖L∞). Therefore, the sequence of entropy solutions {un} is Cauchy
in C([0, T ];L1(B(x0,M))).

Since Rd can be covered by a countable number of such balls, a diagonal argument
produces a function u such that uε → u in C([0, T ];L1

loc(Rd)). Taking, if necessary, a
further subsequence we may assume un → u a.e., and hence ‖u‖L∞ ≤ ‖u0‖L∞ since
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‖un‖L∞ ≤ ‖u0‖L∞ by Corollary 3.1 d). We conlude that u is an entropy solution
of (1.1), by passing to the limit in the entropy inequality for un, cf. Definition 2.2
c). �

4. Auxiliary results

To establish the L1 contraction estimates, we will need some auxiliary results
that we derive here.

Lemma 4.1. Assume r > 0 and that (Aµ) holds. Let φ ∈W 2,1(Rd), then

‖Lµr [φ]‖L1(Rd) ≤
1

2
‖D2φ‖L1(Rd,Rd×d)

ˆ
0<|z|≤r

|z|2 dµ(z) for r < 1,

‖Lµ,r[φ]‖L1(Rd) ≤ 2‖φ‖L1(Rd)

ˆ
|z|>r

dµ(z) for r > 1,

and

‖Lµ[φ]‖L1(Rd) ≤ 2‖φ‖W 2,1(Rd)

ˆ
Rd\{0}

min{|z|2, 1}dµ(z).

See e.g. Lemma 4.1 and Lemma 4.2 in [3] for proofs of the above lemmas. The
main result of this section is a ”Kato inequality” or a ”dual equation” for (1.1).

Proposition 4.2. Assume (Af ) and (Aϕ) hold. Let u and v be entropy sub-
and supersolutions of (1.1) with initial data u0, v0 ∈ L∞(Rd), and sources g, h ∈
L1(0, T ;L∞(Rd)), respectively. If either L = ∆ or L = Lµ and (Aµ) holds, then
for all non-negative ψ ∈ C∞c (QT )¨

QT

η(u(x, t), v(x, t))∂tψ(x, t) + q(u(x, t), v(x, t)) ·Dψ(x, t) dxdt

+

¨
QT

η(ϕ(u(x, t)), ϕ(v(x, t)))L∗ψ(x, t) dxdt

+

¨
QT

η(g(x, t), h(x, t))ψ(x, t) dx dt ≥ 0,

(4.1)

where η(u, v) = (u− v)+ and q(u, v) = sign(u− v)+[f(u)− f(v)].

The proof relies on the Kružkov doubling of variables technique, and the result
is new in the non-local case.

Proof. If L = ∆ this is a known result, see e.g. [32, Theorem 3.9]. The result can
also be obtain by following the calculations of Karlsen and Risebro, see the proofs
of Lemmas 2.3 and 2.4 and Theorem 1.1 in [28]. Our assumptions and Definition
2.1 ensures that equation (3.48) in [28] holds (with Const = 0 and F (x, t, u, v) =
F (u, v) = sign(u−v)[f(u)−f(v)]) when the solutions u, v are in C([0, T ];L1

loc(Rd))∩
L∞(QT ) in stead of C([0, T ];L1(Rd)) ∩ L∞(QT ).

For L = Lµ we follow the Proof of Theorem 3.1 in [14] closely; sketching known
estimates and focusing on new ones (which are needed since u, v /∈ L1 anymore).
We start with the Kružkov doubling of variables technique [31, 1, 14]. Since u and
v are sub- and supersolutions, we can take (2.3) with u = u(x, t) and k = v(y, s),
and (2.4) with u = v(x, t) and k = u(y, s). Integrate the two inequalities over
(y, s) ∈ QT , rename (x, t, y, s) as (y, s, x, t) in the second one, and add the two
inequalities. Then note that (v−u)− = (u−v)+, (ϕ(v)−ϕ(u))− = (ϕ(u)−ϕ(v))+,
and that we can manipulate (cf. [14, Proof of Theorem 3.1]) the integral with
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integrand sign(u− v)+(Lµ,r[ϕ(u)]− Lµ,r[ϕ(v)])φ to get the integrand on the form

(ϕ(u)− ϕ(v))+L̃µ∗, r[φ], where

L̃µ
∗, r[φ](x, y) :=

ˆ
|z|>r

φ(x+ z, y + z)− φ(x, y) dµ∗(z).

Now, we let dw := dxdtdy ds and send r → 0 to find that
˘

QT×QT
(u− v)+(∂t + ∂s)φ

+ sign(u− v)+[f(u)− f(v)] · (Dx +Dy)φ dw

+

˘
QT×QT

(ϕ(u)− ϕ(v))+L̃µ
∗
[φ(·, t, ·, s)](x, y) dw

+

˘
QT×QT

(g − h)+φ dw ≥ 0,

(4.2)

where we have used that sign(u− v)+(g − h) ≤ (g − h)+. Take

φ(x, t, y, s) = ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
ψ

(
x+ y

2
,
t+ s

2

)
,

for ε1, ε2 > 0, ψ ∈ C∞c (QT ), and where ωε is a mollifier (see (1.5)), and ω̂ε1(x) =
ωε1(x1) . . . ωε1(xd). We insert this test function into (4.2), noting that

L̃µ
∗
[φ(·, t, ·, s)](x, y) = ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
Lµ
∗
[
ψ

(
·, t+ s

2

)](
x+ y

2

)
,

and then we want to take the limit as (ε1, ε2)→ (0, 0).
So far the proof is quite similar to the proof of Theorem 3.1 in [14]. Taking the

last limit, however, requires some attention. Some of the arguments of [14] will not
hold here since the solutions are no longer in L1.

The convergence as (ε1, ε2) → (0, 0) of the local terms is well-known (cf. [19,
Proof of Theorem 6.2.3]), and the convergence of the source term follow from a
simple computation. So here we give details only for the non-local term. We need
to show that M → 0 for

M :=

∣∣∣∣˘
QT×QT

η(ϕ(u(x, t)), ϕ(v(y, s)))

ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
Lµ
∗
[
ψ

(
·, t+ s

2

)](
x+ y

2

)
dw

−
¨
QT

η(ϕ(u(x, t)), ϕ(v(x, t)))Lµ
∗
[ψ(·, t)](x) dxdt

∣∣∣∣
and η(a, b) = (a− b)+. To do that, we add and subtract

˘
QT×QT

η(ϕ(u(x, t)), ϕ(v(x, t)))

ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
Lµ
∗
[
ψ

(
·, t+ s

2

)](
x+ y

2

)
dw,

and use that

(4.3)

¨
QT

ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
dy ds = 1,
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to get that

M ≤
˘

QT×QT
|η(ϕ(u(x, t)), ϕ(v(y, s)))− η(ϕ(u(x, t)), ϕ(v(x, t)))|

ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
Lµ
∗
[
ψ

(
·, t+ s

2

)](
x+ y

2

)
dw

+

˘
QT×QT

η(ϕ(u(x, t)), ϕ(v(x, t)))ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
∣∣∣∣Lµ∗ [ψ(·, t+ s

2

)](
x+ y

2

)
− Lµ

∗
[ψ(·, t)](x)

∣∣∣∣ dw

=: M1 +M2.

Since |η(ϕ(u(x, t)), ϕ(v(y, s)))− η(ϕ(u(x, t)), ϕ(v(x, t)))| ≤ |ϕ(v(x, t))−ϕ(v(y, s))|,
extensive use of adding and subtracting terms, and the triangle inequality will give

M1 ≤
˘

QT×QT
ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
{
|ϕ(v(x, t))|

∣∣∣∣Lµ∗ [ψ(·, t+ s

2

)](
x+ y

2

)
− Lµ

∗
[ψ(·, t)](x)]

∣∣∣∣
+
∣∣∣ϕ(v(x, t))

∣∣Lµ∗ [ψ(·, t)](x)
∣∣− ϕ(v(y, s))

∣∣Lµ∗ [ψ(·, s)](y)
∣∣∣∣∣

+ |ϕ(v(y, s))|
∣∣∣∣Lµ∗ [ψ(·, t+ s

2

)](
x+ y

2

)
− Lµ

∗
[ψ(·, s)](y)

∣∣∣∣
}

dw.

Let us now show the convergence to zero of the term

M2 =

˘
QT×QT

ω̂ε1

(
x− y

2

)
ωε2

(
t− s

2

)
η(ϕ(u(x, t)), ϕ(v(x, t)))∣∣∣∣Lµ∗ [ψ(·, t+ s

2

)](
x+ y

2

)
− Lµ

∗
[ψ(·, t)](x)

∣∣∣∣ dw.

Note that Lµ[ψ] ∈ L1(QT ) by Lemma 4.1, and that u, v ∈ L∞(QT ) and, hence,
ϕ(u), ϕ(v) ∈ L∞(QT ) by (Aϕ). By a change of variables y − x = y′ and s− t = s′,
changing the order of integration, Hölder’s inequality, and (4.3) we get

M2 ≤‖η(ϕ(u), ϕ(v))‖L∞(QT )

sup
|y′|≤ε1, |s′|≤ε2

∥∥∥∥Lµ∗ [ψ(·, t+
s′

2

)](
x+

y′

2

)
− Lµ

∗
[ψ(·, t)](x)

∥∥∥∥
L1(QT )

,

which goes to zero as (ε1, ε2)→ (0, 0) by the continuity of the L1 translation. In a
similar way, we can also show that M1 → 0 and the proof is complete. �

In the next section we need the following corollary of Proposition 4.2:

Corollary 4.3. Assume (Af ), (Aϕ) hold, and either L = ∆ or L = Lµ and
(Aµ) holds. Let u and v be entropy sub- and supersolutions of (1.1) with initial
data u0, v0 ∈ L∞(Rd) and source terms g, h ∈ L1(0, T ;L∞(Rd)) respectively. Let
ψ(x, t) = Γ(x, t)Θ(t).
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a) If 0 < t < T , 0 ≤ Γ ∈ C∞c (QT ), and 0 ≤ Θ ∈ C∞c ((0, T )), then

0 ≤
¨
QT

(u− v)+(x, t)Γ(x, t)Θ′(t) dx dt

+

¨
QT

Θ(t)(u− v)+(x, t)
[
∂tΓ + Lf |DΓ|+ Lϕ

(
L∗Γ(x, t)

)+]
dxdt

+

ˆ T

0

Θ(t)

ˆ
Rd

(g − h)+(x, t)Γ(x, t) dx dt.

(4.4)

b) If ϕ(u) = u and 0 ≤ Γ ∈ C([0, T ];L1(Rd)) ∩ L1((0, T );W 2,1(Rd)) ∩ C∞(QT ) ∩
L∞(QT ) satisfies

∂tΓ + Lf |DΓ|+ L∗Γ(x, t) ≤ 0 in QT ,

then ˆ
Rd

(u− v)+(x, T ) Γ(x, T ) dx

≤
ˆ
Rd

(u0 − v0)+(x) Γ(x, 0) dx+

ˆ T

0

ˆ
Rd

(g − h)+(x, t)Γ(x, t) dxdt.

c) If 0 ≤ Γ ∈ C([0, T ];L1(Rd))∩L1((0, T );W 2,1(Rd))∩C∞(QT )∩L∞(QT ) satisfies

∂tΓ + Lf |DΓ|+ Lϕ
(
L∗Γ(x, t)

)+ ≤ 0 in QT ,

then ˆ
Rd

(u− v)+(x, T )Γ(x, T ) dx

≤
ˆ
Rd

(u0 − v0)+(x)Γ(x, 0) dx+

ˆ T

0

ˆ
Rd

(g − h)+(x, t)Γ(x, t) dx dt.

Proof. a) Remember that (u − v)+ = η(u, v). The proof is a simple consequence
of Equation (4.1), and the following easy estimates: |q(u, v) ·DΓ| ≤ |q(u, v)||DΓ|,
|q(u, v)| ≤ Lfη(u, v) (see [19, p. 151]), and η(ϕ(u), ϕ(v)) ≤ Lϕη(u, v) (by (Aϕ))
which implies that

η(ϕ(u), ϕ(v))L∗[Γ] ≤ Lϕη(u, v)
(
L∗[Γ]

)+
.

b) Similar but easier than c), we omit the proof. See also [1] for a proof when
L∗ = −(−∆)

α
2 .

c) Since C∞c (QT ) is dense in

E = {w : w ∈ C([0, T ];L1(Rd)) ∩ L1((0, T );W 2,1(Rd)) and ∂tw ∈ L1(QT )}

(cf. [1, p. 159]), there is a sequence of functions Γε ∈ C∞c (QT ) such that

Γε, ∂tΓε, |DΓε|, L∗Γε → Γ, ∂tΓ, |DΓ|, L∗Γ in L1(QT ),

when ε → 0+. Here we used that ‖L∗Γε‖L1(QT ) ≤ c‖Γε‖L1((0,T );W 2,1(Rd)) by the
definition of ∆ and by Lemma 4.1. Corollary 4.3 a) gives that Equation (4.4) holds
with Γε replacing Γ, and then also for Γ by sending ε→ 0+.

By (4.4) and the extra assumption on Γ we see that¨
QT

(u− v)+(x, t)Γ(x, t)Θ′(t) dxdt

+

ˆ T

0

Θ(t)

ˆ
Rd

(g − h)+(x, t)Γ(x, t) dxdt ≥ 0.

(4.5)
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Let 0 ≤ Θ ∈ C∞c ((0, T )) be defined by

(4.6) Θ(t) = Θε(t) =

ˆ t

−∞
ωε(s− t1)− ωε(s− t2) ds,

where 0 < t1 < t2 < T . For ε > 0 small enough, Θε(t) is supported in [0, T ], and is
a smooth approximation to a square pulse which is one between t = t1 and t = t2
and zero otherwise. By (4.5), we get¨

QT

(u− v)+(x, t)Γ(x, t)ωε(t− t2) dxdt

≤
¨
QT

(u− v)+(x, t)Γ(x, t)ωε(t− t1) dxdt

+

ˆ T

0

Θε(t)

ˆ
Rd

(g − h)+(x, t)Γ(x, t) dx dt.

Since η(u, v) ∈ L∞(QT ) and Γ ∈ C([0, T ];L1(Rd)), a direct argument, and using
the continuity of the L1 translation shows the convergence of the integrals involving
(u − v)+Γωε as ε → 0+. Moreover, since

´
Rd(g − h)+(x, t)Γ(x, t) dx is finite, the

dominated convergence theorem will give convergence of the integrals involving
Θε(g − h)+Γ as ε→ 0+. Thus, we end up withˆ

Rd
(u− v)+(x, t2)Γ(x, t2) dx

≤
ˆ
Rd

(u− v)+(x, t1)Γ(x, t1) dx

+

ˆ t2

t1

ˆ
Rd

(g − h)+(x, t)Γ(x, t) dx dt.

Finally, the conclusion can be obtained by letting t2 → T− and t1 → 0+. Since
u, v ∈ C([0, T ];L1

loc(Rd)) and Γ ∈ C([0, T ];L1(Rd)), we can use Fatou’s lemma on
the left-hand side (the integrand is non-negative) as t2 → T−. The computations
as t1 → 0+ of the first integral on the right-hand side is shown in the following:

‖(u− v)+(·, t1)Γ(·, t1)− (u− v)+(·, 0)Γ(·, 0)‖L1(Rd)

≤ ‖(u− v)+‖L∞(QT )‖Γ(·, t1)− Γ(·, 0)‖L1(Rd)

+ ‖((u− v)+(·, t1)− (u− v)+(·, 0))Γ(·, 0)‖L1(Rd),

where the first term goes to zero as t1 → 0+ since Γ ∈ C([0, T ];L1(Rd)). The second
term, however, needs a more refined argument. By Definition 2.1 or 2.2 a) it follows
that as t→ 0+, u(·, t)→ u(·, 0) in L1

loc(Rd) and hence also point-wise a.e. (along a
subsequence). Moreover, |(u − v)+(x, t1) − (u − v)+(x, 0)|Γ(x, 0) is dominated by
2‖(u − v)+‖L∞(QT )Γ(x, 0) ∈ L1(Rd). Hence, the dominated convergence theorem

ensures that the second term also goes to zero when t1 → 0+.
We conclude by using the dominated convergence theorem on the integral in-

volving (g − h)+Γ as t2 → T− and t1 → 0+, and by noting that (u − v)+(x, 0) ≤
(u0 − v0)+(x) by Definition 2.1 or 2.2 a) and b). �

5. Proof of Theorems 2.7 and 2.8

In previous proofs of L1 contractions (see e.g. [19, 1]), even if it was not written
in that way, the idea was essentially to prove a result like Corollary 4.3 b) and
then construct a suitable Γ to conclude. In a similar way, we will construct Γ’s for
Corollary 4.3 b) and c), and then conclude. Note that since (2.6) is fully non-linear
and degenerate, this task will be much more difficult than in [1] where L = −(−∆)

α
2

and ϕ(u) = u.
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As in [1] we will build Γ by the convolution of subsolutions of simpler problems,
but first an auxiliary result.

Lemma 5.1. If φ ∈ L1(Rd) is non-negative and f ∈ Cb(Rd), then

(φ ∗ f)+ ≤ φ ∗ f+ and |φ ∗ f | ≤ φ ∗ |f |.

Proof. The proofs are easy and similar, so we only do one case. Since

0 ≤
ˆ
Rd
φ(x− y) max{f(y), 0} dy,

and ˆ
Rd
φ(x− y)f(y) dy ≤

ˆ
Rd
φ(x− y) max{f(y), 0} dy,

the proof is immediate. �

Lemma 5.2. Assume that L = ∆ or L = Lµ and (Aµ) holds, and assume that
0 ≤ φ(x, t) ∈ C∞(QT ) ∩ C([0, T ];L1(Rd)) ∩ L∞(QT ) solves

(5.1) ∂tφ(x, t) + Lf |Dφ(x, t)| ≤ 0 in QT ,

and define Γ(x, t) = ψ(·, t) ∗ φ(·, t)(x).

a) If 0 ≤ ψ(x, t) ∈ C∞(QT ) ∩ C([0, T ];L1(Rd)) ∩ L∞(QT ) solves

∂tψ(x, t) + L∗ψ(x, t) ≤ 0 in QT ,

then 0 ≤ Γ ∈ C([0, T ];L1(Rd)) ∩ C∞(QT ), and solves

∂tΓ(x, t) + Lf |DΓ(x, t)|+ L∗Γ(x, t) ≤ 0 in QT .

b) If 0 ≤ ψ(x, t) ∈ C∞(QT ) ∩ C([0, T ];L1(Rd)) ∩ L∞(QT ) solves

(5.2) ∂tψ(x, t) + Lϕ(L∗ψ(x, t))+ ≤ 0 in QT ,

then 0 ≤ Γ ∈ C([0, T ];L1(Rd)) ∩ C∞(QT ), and solves

∂tΓ(x, t) + Lf |DΓ(x, t)|+ Lϕ
(
L∗Γ(x, t)

)+ ≤ 0 in QT .

Remark 5.3. If L∗ = L = −(−∆)
α
2 , α ∈ (0, 2], then Lemma 5.2 a) is satisfied with

ψ(x, t) = K̃(x, τ − t) for 0 ≤ t ≤ τ , where K̃ is defined by (2.5).

Proof. We only prove b) since a) is similar but easier. By Lemma 5.1 and properties
of convolutions

∂tΓ(x, t) = ∂tψ(·, t) ∗ φ(·, t)(x) + ψ(·, t) ∗ ∂tφ(·, t)(x),

|DΓ(x, t)| ≤ ψ(·, t) ∗ |Dφ(·, t)|(x),

and
(L∗Γ(x, t))+ =

(
φ(·, t) ∗ L∗ψ(·, t)

)+
(x) ≤ φ(·, t) ∗ (L∗ψ(·, t))+(x).

An easy computation using (5.1) and (5.2) then gives the result. �

To find a ψ for Lemma 5.2, we take the (viscosity) solution of (2.6) and mollify
it. We start by several auxiliary results and the proof of Lemma 2.4.

Lemma 5.4. Assume that L = ∆ or L = Lµ and (Aµ) holds. If Φ ∈ Cb(QT ) is a
viscosity solution of (2.6), and ρδ is a mollifier satisfying (1.6), then

(5.3) Φδ(x, t) := (Φ ∗ ρδ)(x, t) =

¨
Rd×R

Φ(x− y, t− s)ρδ(y, s) dy ds

is a classical supersolution of (2.6):

(5.4) ∂tΦδ(x, t) ≥ (L∗Φδ(x, t))
+.
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Remark 5.5. As usual limδ→0+ Φδ = Φ point-wise.

Outline of proof. To understand the idea behind the proof, let Φ(y, s) be a classical
solution of (2.6). Multiply the equation by ρδ(x − y, t − s), integrate over Rd × R
w.r.t. (y, s), and use Lemma 5.1 to conclude:

0 =

ˆ
R

ˆ
Rd
∂tΦ(y, s)ρδ(x− y, t− s) dy ds

−
ˆ
R

ˆ
Rd

(L∗Φ(y, s))
+
ρδ(x− y, t− s) dy ds

≤ ∂t(Φ ∗ ρδ)(x, t)− (L∗(Φ ∗ ρδ)(x, t))+

= ∂tΦδ − (L∗Φδ)
+.

We refer to [7, Theorem 3.1 (a)] for a proof in the case L = ∆, and to [27, Theorem
6.4] for how to adapt this proof when L = Lµ. �

We state some well-known results for (2.6), see e.g. [18, 26] for proofs:

Lemma 5.6. a) If u0 ∈ Cb(Rd), then there exists an unique viscosity solution
u ∈ Cb(QT ) of (2.6).

b) If u and v are viscosity sub- and supersolutions of (2.6) and u0 ≤ v0 on Rd,
then u ≤ v in QT .

c) If u is a solution of (2.6) with initial data u0 ∈W 1,∞(Rd), then

|u(x, t)− u(y, s)| ≤ C(|x− y|+ |t− s| 12 ) for (x, t), (y, s) ∈ QT .

d) If u is a classical subsolution (supersolution) of (2.6), then u is a viscosity
subsolution (supersolution) of (2.6).

Proof of Lemma 2.4. Since Φ0(x) belongs to C∞c (Rd) (and hence W 1,∞(Rd)) by
assumption, there exists a unique viscosity solution Φ ∈ Cb(QT̃ ) of (2.6) by Lemma
5.6 a). Furthermore, since 0 ≤ Φ0(x), 0 ≤ Φ(x, t) by Lemma 5.6 b).

We claim that there is C > 0, k > 0, K > 0, such that for all |ξ| = 1,

Φ(x, t) ≤ w(x, t) := CeKtekξ·x in QT̃ .

If this is the case, then Φ(x, t) ≤ CeKte−k|x| (take ξ = − x
|x| for x 6= 0) and

Φ ∈ L∞(0, T̃ ;L1(Rd)). Moreover, Φ ∈ C([0, T̃ ];L1(Rd)) since by the dominated

convergence theorem (the integrand is dominated by 2CeKT̃ e−k|x|),

lim
h→0

ˆ
Rd
|Φ(x, t+ h)− Φ(x, t)|dx = 0 for all t ∈ [0, T̃ ].

To complete the proof, it only remains to prove the claim.
Let L∗ = Lµ∗ and assume that (A+

µ ) holds. Take C such that Φ0 ≤ w(·, 0), and
note that ∂tw = Kw and

Lµ
∗
[w(·, t)](x)

=

ˆ
|z|>0

w(x+ z, t)− w(x, t)− z ·Dw(x, t)1|z|≤1 dµ∗(z)

= w(x, t)

[ ˆ
0<|z|≤1

ekξ·z − 1− kξ · z dµ∗(z) +

ˆ
|z|>1

ekξ·z − 1 dµ∗(z)

]
Take k ≤M , where M is defined in (A+

µ ). Then by Taylor’s theorem and (A+
µ ),

Lµ
∗
[w(·, t)](x) ≤ Ckw(x, t),



18 J. ENDAL AND E. R. JAKOBSEN

where

Ck :=
ek

2
k2
ˆ
0<|z|≤1

|z|2 dµ∗(z) +

ˆ
|z|>1

eM |z| dµ∗(z) ∈ (0,∞).

It then follows that

∂tw − (Lµ
∗
[w])+ = ∂tw + min{−Lµ

∗
[w], 0} ≥ w(K − Ck).

We take K such that K−Ck ≥ 0 in order to make w a supersolution. Then Lemma
5.6 d) shows that w is a viscosity supersolution, and Lemma 5.6 b) ensures that
Φ(x, t) ≤ w(x, t).

When L∗ = ∆, the argument is similar. We take any k > 0 and a C such that
Φ0 ≤ w(·, 0), and then we observe that

∂tw − (∆w)+ = w(K − k2).

If K−k2 ≥ 0, then Lemma 5.6 d) and b) ensure that Φ(x, t) ≤ w(x, t) as before. �

Proposition 5.7. Let Φ be the function given by Lemma 2.4, T̃ = max{T, LϕT},
and Lϕ be the Lipschitz constant of ϕ. Then Φδ(x, t) defined by (5.3) solves (5.4),
satisfies

0 ≤ Φδ ∈ C([0, T̃ ];L1(Rd)) ∩ C∞(QT̃ ) ∩ L∞(QT̃ ),

and

(5.5) ‖Φδ(·, 0)− Φ0‖L∞(Rd) ≤ Cδ,
where C is some constant independent of δ > 0.

Proof. First note that Φ, ρδ, and hence Φδ, are nonnegative, bounded, and ρδ and
Φδ are smooth. Moreover, by Tonelli’s theorem Φδ ∈ C([0, T̃ ];L1(Rd)) sinceˆ
Rd

Φδ(x, t) dx =

¨
Rd×R

ρδ(y, s)

ˆ
Rd

Φ(x−y, t−s) dxdy ds ≤ max
t∈[0,T̃ ]

‖Φ(·, t)‖L1(Rd).

By Lemma 5.4, Φδ is a classical supersolution of (2.6) and hence solves (5.4).
We use simple computations, the compact support of ρδ, and Lemma 5.6 c) to

obtain

|Φδ(x, 0)− Φ0(x)|

≤
¨

Rd×R
(|Φ(x− y, 0− s)− Φ0(x− y)|+ |Φ0(x− y)− Φ0(x)|) ρδ(y, s) dy ds

≤
¨

Rd×R
C(|s| 12 + |y|)ρδ(y, s) dy ds

≤ C

(
sup

s∈(0,δ2)
|s| 12 + sup

y∈(−δ,δ)d
|y|

)¨
Rd×R

ρδ(y, s) dy ds

= Cδ,

and hence (5.5) holds. �

Corollary 5.8. Let Φδ be the function given by Proposition 5.7, T̃ = max{T, LϕT},
0 < τ < T̃ and 0 ≤ t ≤ τ , and let

Kδ(x, t) := Φδ(x, Lϕ(τ − t)),
where Lϕ is the Lipschitz constant of ϕ. Then

0 ≤ Kδ ∈ C([0, T̃ ];L1(Rd)) ∩ C∞(QT̃ ) ∩ L∞(QT̃ )

solves
∂tKδ + Lϕ(L∗Kδ)

+ ≤ 0 in QT̃ ,

and satisfies
‖Kδ(·, τ)− Φ0‖L∞(Rd) ≤ Cδ,
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where C is a constant independent of δ > 0.

To complete the collection of lemmas needed to prove Theorems 2.7 and 2.8, we
now show how to choose φ in Lemma 5.2.

Lemma 5.9. Let Lf be the Lipschitz constant of f , 0 < τ < T , 0 ≤ t ≤ τ ,

R > LfT + 1, δ̃ > 0, x0 ∈ Rd, and

(5.6) γδ̃(x, t) := 1[0,R] ∗ ωε
(√

δ̃2 + |x− x0|2 + Lf t
)
,

where ωε is a mollifier (defined by (1.5)). Then γδ̃ ∈ C∞c (QT ) and

∂tγδ̃(x, t) + Lf |Dγδ̃(x, t)| ≤ 0.

Since (1[0,R] ∗ ωε)′ ≤ 0 in R+, the proof is a straight forward computation.

Proof of Theorem 2.8. Let 0 < τ < T , R > LfT + 1, x0 ∈ Rd, and ε, δ, δ̃ > 0, and
γδ̃ be defined by (5.6). Define

γ(x, t) := lim
δ̃→0+

γδ̃(x, t) = 1[0,R] ∗ ωε(|x− x0|+ Lf t)

and
Γ(x, t) = Kδ(·, t) ∗ γδ̃(·, t)(x) for 0 ≤ t ≤ τ,

where Kδ is given by Corollary 5.8. By the properties of Kδ, and since 0 ≤ γδ̃ ∈
C∞c (QT ),

0 ≤ Γ ∈ C([0, τ ];L1(Rd)) ∩ L1(0, τ ;W 2,1(Rd)) ∩ C∞(Qτ ) ∩ L∞(Qτ ).

By Lemma 5.2 (with φ = γδ̃ and ψ = Kδ) and Corollary 4.3 c), it then follows thatˆ
Rd

(u− v)+(x, τ) Γ(x, τ) dx ≤
ˆ
Rd

(u0 − v0)+(x) Γ(x, 0) dx

+

ˆ τ

0

ˆ
Rd

(g − h)+(x, t) Γ(x, t) dxdt,

or ˆ
Rd

(u− v)+(x, τ)Kδ(·, τ) ∗ γδ̃(·, τ)(x) dx

≤
ˆ
Rd

(u0 − v0)+(x)Kδ(·, 0) ∗ γδ̃(·, 0)(x) dx

+

ˆ τ

0

ˆ
Rd

(g − h)+(x, t)Kδ(·, t) ∗ γδ̃(·, t)(x) dxdt.

(5.7)

We use Tonelli’s theorem to rewrite the right hand side,ˆ
Rd

(u0 − v0)+(x)

ˆ
Rd
Kδ(x− y, 0)γδ̃(y, 0) dy dx

=

ˆ
Rd
γδ̃(y, 0)

ˆ
Rd

(u0 − v0)+(x)Kδ(x− y, 0) dxdy

=

ˆ
Rd
γδ̃(x, 0)Kδ(−·, 0) ∗ (u0 − v0)+(x) dx,

(5.8)

and similarly,ˆ τ

0

ˆ
Rd

(g − h)+(x, t)Kδ(·, t) ∗ γδ̃(·, t)(x) dx dt

=

ˆ τ

0

ˆ
Rd
γδ̃(x, t)Kδ(−·, t) ∗ (g(·, t)− h(·, t))+(x) dxdt.

With the above manipulation in mind, we take the limit inferior of (5.7) as

δ̃ → 0+ using Fatou’s lemma on the left-hand side (the integrand is nonnegative),
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and the dominated convergence theorem on the right-hand side since the integrands
are dominated by 21[0,2R]∗ωε(|x−x0|+Lf t)Kδ(−y, t)M(t) for M(t) = ‖u0‖L∞(Rd)+
‖v0‖L∞(Rd) + ‖g(·, t)‖L∞(Rd) + ‖h(·, t)‖L∞(Rd). Thus,

ˆ
Rd

(u− v)+(x, τ)Kδ(·, τ) ∗ γ(·, τ)(x) dx

≤
ˆ
Rd
γ(x, 0)Kδ(−·, 0) ∗ (u0 − v0)+(x) dx

+

ˆ τ

0

ˆ
Rd
γ(x, t)Kδ(−·, t) ∗ (g(·, t)− h(·, t))+(x) dxdt.

(5.9)

By Hölder’s inequality and Corollary 5.8,

|Kδ(·, τ) ∗ γ(·, τ)(x)− Φ0 ∗ γ(·, τ)(x)|
≤ ‖Kδ(·, τ)− Φ0‖L∞(Rd)‖γ(·, τ)‖L1(Rd)

= Cδ.

Hence, taking the limit inferior as δ → 0+ in (5.9) using Fatou’s lemma givesˆ
Rd

(u− v)+(x, τ) Φ0(·) ∗ γ(·, τ)(x) dx

≤ lim inf
δ→0+

ˆ
Rd
γ(x, 0)Kδ(−·, 0) ∗ (u0 − v0)+(x) dx

+ lim inf
δ→0+

ˆ τ

0

ˆ
Rd
γ(x, t)Kδ(−·, t) ∗ (g(·, t)− h(·, t))+(x) dx dt.

(5.10)

Now, let C∞c (Rd) 3 Φ0(x) := ω̂ε̃(x − x0). Note that Φ0 ∗ γ(·, τ) ≥ 0 and that
Φ0(·) ∗ γ(·, τ)(x) = 1 when |x− x0| < R− Lfτ − ε− ε̃. Hence, if ε+ ε̃ < 1, then

Φ0 ∗ γ(·, τ) ≥ 1|x−x0|≤R−Lfτ−1,

and hence we have the following lower bound for the left hand side of (5.10),ˆ
Rd

1|x−x0|≤R−Lfτ−1(u− v)+(x, τ) dx

≤
ˆ
Rd

(u− v)+(x, τ) Φ0(·) ∗ γ(·, τ)(x) dx.

Observe that we can not send ε̃→ 0+ here because this will violate the inequality
w(x, 0) ≥ Φ0 in the proof of Proposition 5.7, and we would lose the L1 bound on
Kδ.

Consider the first term on the right hand side of (5.10), and define

M :=

∣∣∣∣ˆ
Rd

1[0,R] ∗ ωε(|x− x0|) Φδ(−·, Lϕτ) ∗ (u0 − v0)+(x) dx

−
ˆ
Rd

1[0,R] ∗ ωε(|x− x0|) Φ(−·, Lϕτ) ∗ (u0 − v0)+(x) dx

∣∣∣∣
≤
ˆ
Rd

1[0,R] ∗ ωε(|x− x0|)∣∣Φδ(−·, Lϕτ) ∗ (u0 − v0)+(x)− Φ(−·, Lϕτ) ∗ (u0 − v0)+(x)
∣∣ dx,

where γ(x, 0) = 1[0,R] ∗ ωε(|x − x0|) and Kδ(−·, 0) = Φδ(−·, Lϕτ). We will show

that M → 0 as δ → 0+, a result which follows from the dominated convergence
theorem if

M̃ :=
∣∣Φδ(−·, Lϕτ) ∗ (u0 − v0)+(x)− Φ(−·, Lϕτ) ∗ (u0 − v0)+(x)

∣∣→ 0
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a.e. as δ → 0+. By the definitions of Φδ and ρδ ((5.3) and (1.6)), interchanging the
order of integration, and Hölder’s inequality, we find that

M̃ ≤
(
‖u0‖L∞(Rd) + ‖v0‖L∞(Rd)

)
¨

Rd×R
ρδ(ξ, s) ‖Φ(−ξ − ·, Lϕτ − s)− Φ(−·, Lϕτ)‖L1(Rd) dξ ds.

The triangle and Hölder inequalities and the compact support of ρδ then gives

M̃ ≤
(
‖u0‖L∞(Rd) + ‖v0‖L∞(Rd)

)
·

{
sup
|s|<δ2

‖Φ(−·, Lϕτ − s)− Φ(−·, Lϕτ)‖L1(Rd)

+ sup
|ξ|<δ

‖Φ(−ξ − ·, Lϕτ)− Φ(−·, Lϕτ)‖L1(Rd)

}
.

The two suprema (and hence also M̃ andM) converge to zero since Φ ∈ C([0, T ];L1(Rd))
and by the continuity of the L1 translation, respectively.

The second term on the right hand side of (5.10) can be estimated by similar
arguments (note that Kδ(x, t) = Φδ(x, Lϕ(τ − t))), and when we combine all the
estimates we find the following inequality:ˆ

Rd
1|x−x0|≤R−Lfτ−1(u− v)+(x, τ) dx

≤
ˆ
Rd

1[0,R] ∗ ωε(|x− x0|) Φ(−·, Lϕτ) ∗ (u0 − v0)+(x) dx

+

ˆ τ

0

ˆ
Rd

1[0,R] ∗ ωε(|x− x0|+ Lf t)

Φ(−·, Lϕ(τ − t)) ∗ (g(·, t)− h(·, t))+(x) dxdt.

The integrands on the right-hand side are dominated by 21[0,2R](|x−x0|+Lf t)Φ(−y, Lϕ(τ−
t))M(t) where M(t) = ‖u0‖L∞(Rd) + ‖v0‖L∞(Rd) + ‖g(·, t)‖L∞(Rd) + ‖h(·, t)‖L∞(Rd),

so we may use the dominated convergence theorem to send ε→ 0+ and obtainˆ
B(x0,R−Lfτ−1)

(u(x, τ)− v(x, τ))+ dx

≤
ˆ
B(x0,R)

Φ(−·, Lϕτ) ∗ (u0 − v0)+(x) dy dx

+

ˆ τ

0

ˆ
B(x0,R−Lf t)

Φ(−·, Lϕ(τ − t)) ∗ (g(·, t)− h(·, t))+(x) dx dt.

For any M > 0, we set R = M + 1 + Lfτ . Since τ ∈ (0, T ) is arbitrary, the proof
of Theorem 2.8 is complete. �

Proof of Theorem 2.7. We sketch the proof in the case when g = 0. We proceed
as in the proof of Theorem 2.8, this time with the choice ψ(x, t) = K̃(x, τ − t) for
0 ≤ t ≤ τ (see Remark 5.3). We obtain an inequality like (5.7), take the limit as
t→ τ− in (5.7), and find that

lim
t→τ−

ˆ
Rd

(u− v)+(x, τ) K̃(·, τ − t) ∗ γδ̃(·, τ)(x) dx

≤
ˆ
Rd

(u0 − v0)+(x) K̃(·, τ) ∗ γδ̃(·, 0)(x) dx.
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Following (5.8) (using Lemma 2.3 iv)), using that K̃ is an approximative delta in

time, and taking the limit as δ̃ → 0+ we getˆ
Rd

1[0,R] ∗ ωε(|x− x0|+ Lfτ)(u(x, τ)− v(x, τ))+ dx

≤
ˆ
Rd

1[0,R] ∗ ωε (|x− x0|) K̃(·, τ) ∗ (u0 − v0)+(x) dx,

by Fatou’s lemma, the dominated convergence theorem, and Lemma 2.3 iii). Taking
the limit as ε → 0+ (using Lemma 2.3 ii), Fatou’s Lemma, and the dominated
convergence theorem) yields for any M > 0 with R = M + Lfτˆ

B(x0,M)

(u(x, τ)− v(x, τ))+ dx ≤
ˆ
B(x0,M+Lfτ)

K̃(·, τ) ∗ (u0 − v0)+(x) dx.

�
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[15] S. Cifani and E. R. Jakobsen. On numerical methods and error estimates for degener-
ate fractional convection-diffusion equations. Numer. Math. (Online first November 2013),

DOI:10.1007/s00211-013-0590-0.
[16] P. Clavin. Instabilities and nonlinear patterns of overdriven detonations in gases. Nonlinear

PDE’s in Condensed Matter and Reactive Flows. Kluwer, 49–97, 2002.

[17] R. Cont and P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC
Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton (FL), 2004.

[18] M. G. Crandall, H. Ishii and P.-L. Lions. User’s guide to viscosity solutions of second order

partial differential equations. Bulletin of the American Mathematical Society 27(1):1-67, 1992.
[19] C. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer, 3rd ed., 2010.

[20] A. de Pablo, F. Quiros, A. Rodriguez and J. L. Vázquez. A general fractional porous medium

equation. Comm. Pure Appl. Math. 65(9):1242–1284, 2012.



L1 CONTRACTION FOR DEGENERATE PARABOLIC EQUATIONS 23

[21] E. DiBenedetto. Degenerate parabolic equations. Springer-Verlag, New-York, 1993.

[22] J. Droniou, T. Gallouët and J. Vovelle. Global solution and smoothing effect for a nonlocal

regularization of a hyperbolic equation. J. Evol. Equ. 4(3):479–499, 2003.
[23] J. Droniou and C. Imbert. Fractal first order partial differential equations. Arch. Ra-

tion. Mech. Anal. 182(2):299–331, 2006.
[24] M. S. Espedal and K. H. Karlsen. Numerical solution of reservoir flow models based on large

time step operator splitting algorithms. Lecture Notes in Math., 1734, Springer, Berlin, 2000.

[25] H. Holden and N. H. Risebro. Front Tracking for Hyperbolic Conservation Laws. Applied
Mathematical Sciences, 152, Springer, 2007.

[26] E. R. Jakobsen and K. H. Karlsen. Continuous dependence estimates for viscosity solutions

of integro-PDEs. J. Differential Equations 212(2): 278-318, 2005.
[27] E. R. Jakobsen, K. H. Karlsen and C. La Chioma. Error Estimates for approximate solutions

to Bellman equations associated with controlled jump-diffusions. Numer. Math. 110(2): 221-

255, 2008.
[28] K. H. Karlsen and N. H. Risebro. On the uniqueness and stability of entropy solutions of

non- linear degenerate parabolic equations with rough coefficients. Discrete Contin. Dyn.

Syst. 9(5):1081–1104, 2003.
[29] K. H. Karlsen and S. Ulusoy. Stability of entropy solutions for Lévy mixed hyperbolic para-
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