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W 2,∞ REGULARIZING EFFECT IN A NONLINEAR,
DEGENERATE PARABOLIC EQUATION

IN ONE SPACE DIMENSION

ESPEN ROBSTAD JAKOBSEN

(Communicated by David S. Tartakoff)

Abstract. In this paper we provide and analyze a nonlinear degenerate para-
bolic equation in one space dimension with the following smoothing property:
If the initial data is only uniformly continuous, at positive times, the solution
has bounded second derivatives (it belongs to W 2,∞). We call this surprising
phenomenon a W 2,∞ regularizing effect. So far, such phenomena have only
been observed in uniformly parabolic equations.

1. Introduction

In this paper we are going to study the following initial value problem:

ut + u2
x + max(0,−uxx) = 0 in (0, T )× R := QT ,

u(0, x) = u0(x) in R.
(1.1)

This is an example of a problem that is nonlinear and degenerate parabolic, but still
has “smooth” solutions at positive times, even if the initial data is not “smooth”.
Note that the nonlinearity is nonsmooth. We will show below that if the initial
values are only uniformly continuous, then the solution u(t, ·) belongs to the Sobolev
space W 2,∞(R) for any t ∈ (0, T ]. We call this a W 2,∞ regularizing effect. Actually
the solution u belongs to the parabolic Sobolev space W 2,∞([ε, T ] × R) for all
ε ∈ (0, T ), and this implies that the equation is satisfied almost everywhere.

This is a surprising phenomenon, which to the best of the author’s knowledge,
has only been observed before in equations that are uniformly parabolic. In general,
degenerate parabolic equations do not have smooth solutions, not even when the ini-
tial data is smooth. However, regularizing effects have been studied in the subclasses
of uniformly parabolic equations [6, 14, 17, 18, 19], and first-order Hamilton-Jacobi
equations [15, 16, 7, 4, 2]. In the first case (for convex equations), the solutions typ-
ically become continuously differentiable, twice in x and once in t. In the second
case (for strictly convex Hamiltonians), the solutions typically become Lipschitz
continuous and x-semiconcave.
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Figure 1. Solution of ut + f(ux, uxx) = 0, u|t=0 = u0 at t = 0.5:
(b) f = u2

x + max(0,−uxx), (c) f = u2
x, (d) f = max(0,−uxx).

Even though our equation is neither a first-order Hamilton-Jacobi equation, nor
a uniformly parabolic one, “it has regularizing effects of both types”. To see what
we mean, remove the second-order term from the equation. It then becomes a
first-order HJ equation,

ut + u2
x = 0 in QT ,(1.2)

which has Lipschitz continuous and x-semiconcave solutions for positive time. On
the other hand, removing the quadratic term from (1.1) leads to the degenerate
parabolic equation,

ut = min(0, uxx) in QT ,(1.3)

which has x-semiconvex solutions for positive time. It turns out that adding both
terms to the equation preserves both regularizing effects! That is, the solution of
the full equation becomes both x-semiconvex and x-semiconcave, which means it
belongs to W 2,∞(R) for any fixed positive time.

These regularizing effects are illustrated in Figure 1. Here a Lipschitz continuous
initial data (a) is evolved according to equations (1.1) – (1.3), see (b) – (d). It is
easy to see that the solutions plotted in (b), (c), and (d) are W 2,∞, semiconcave,
and semiconvex respectively.

The rest of the paper is organized as follows: In Section 2 the main result is given
along with a corollary and some comments. The proof of the main result is given in
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Section 3, and finally there is an appendix containing the proofs of auxiliary results
which are either technical or standard.

2. The main result

We start by remarking that equation (1.1) is a convex Hamilton-Jacobi-Bellman
equation, as can be seen more clearly when it is written in the following form:

ut + max
α∈{0,1}
β∈R

{−αuxx + 2βux − β2} = 0 in QT .(2.1)

It is well known that such equations need not have smooth solutions, not even
when the initial values are smooth. The correct notion of weak solutions for these
equations, is the notion of viscosity solutions. We refer to the User’s Guide [5] for
a detailed presentation, and to the book by Fleming & Soner [8] for more infor-
mation about Hamilton-Jacobi-Bellman equations and connections to the viscosity
solutions theory.

Let us introduce some notation. For functions f : QT → R and numbers δ ∈ (0, 1]
we define the following (semi)norms:

|f |0 = ess sup
(t,x)∈QT

|f(t, x)|,

[f ]δ = ess sup
(t,x),(s,y)∈QT

x 6=y,t6=s

|f(t, x)− f(s, y)|
|x− y|δ + |t− s|δ/2 ,

|f |δ = |f |0 + [f ]δ.

Let BUC denote spaces of bounded uniformly continuous functions, and C0,δ spaces
of functions with finite | · |δ norm. The last space contains bounded functions that
are δ-Hölder continuous in x and δ/2-Hölder continuous in t. Furthermore, let
W 2,∞(K) denote the space of functions f : K → R for K ⊂ QT , with finite
norm |f |0 + |fx|0 + |ft|0 + |fxx|0, where derivatives are understood in the sense
of distributions. Finally, by C we denote constants independent of t, x and any
smoothness parameters like ε, ε (see below).

Now we proceed to give an existence, uniqueness, and regularity result for solu-
tions of (1.1).

Proposition 2.1. If u0 ∈ BUC(R), then there exists a unique viscosity solution
u ∈ BUC(QT ) of (1.1). Furthermore if u0 ∈ C0,δ(R) for some δ ∈ (0, 1], then
u ∈ C0,δ(QT ).

This is a standard result holding for a large class of equations, and the regularity
here is the best we can hope for in the general case (without regularizing effects). In
fact the result is optimal w.r.t. global regularity or regularity up to the boundary.
The (global) result is optimal even for the linear heat equation. See e.g. [12] for
general regularity results of this type for nonlinear equations. For completeness, we
provide a proof of this result in the Appendix. We just remark that the first thing
to do is to prove a so-called strong comparison principle for (1.1) [5, 3]. Existence
of a bounded solution then follows by Perron’s method [10, 5]. Uniqueness and
regularity are then (for this problem) rather simple consequences of the comparison
principle.
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We now give the main result, saying that problem (1.1) has a W 2,∞ regularizing
effect. In other words, for t > 0 the solution becomes W 2,∞. So for t > 0 it is more
regular than the initial data and hence more regular than suggested by Proposition
2.1.

Theorem 2.2 (W 2,∞ regularizing effect). Let u be the viscosity solution of (1.1),
and assume u0 ∈ BUC(R). Then u ∈W 2,∞([ε, T ]× R) for all ε ∈ (0, T ).

Note that functions in W 2,∞([ε, T ]×R) are differentiable a.e. twice w.r.t. x and
once w.r.t. t. Since viscosity solutions are point-wise solutions at such points of
differentiability, the following corollary is immediate.

Corollary 2.3. If u0 ∈ BUC(R), then the viscosity solution u of equation (1.1)
satisfies the equation a.e., i.e., it is a so-called strong solution of (1.1).

We remark that the proof of the main result given below only works in one
space-dimension. To see this, consider the RN version of (1.1):

wt + |Dw|2 + max(0,−∆w) = 0 in (0, T )× RN .
It turns out that using the techniques of this paper, we can prove that for t > 0,
w is Lipschitz continuous in t and x and semiconcave in x. However, our proof of
semiconvexity leads to the following inequality,

∆w(t, x) ≥ wt(t, x) ≥ −C(t) in the sense of distributions,

where C(t) is a positive function satisfying limt→0+ C(t) =∞. It is only in R1 that
this inequality implies semiconvexity. In RN we get two-sided control only of the
Laplacian.

The result and proofs can be generalized to more general equations. An easy
generalization is to consider equations of the form

wt +H(wx) = f(wxx) in QT ,

where H is strictly convex and f is increasing, Lipschitz continuous, concave, and
satisfies f(X) ≤ CX for X ∈ R. If f = 0, it is well known that this equation has
Lipschitz continuous and x-semiconcave solutions. Other generalizations are also
possible; see e.g. Chapter 13 in Lions [15] for how to treat more general first-order
terms.

Finally, numerical simulations seem to indicate that the following equation also
exhibits a W 2,∞ regularizing effect:

wt + max(w2
x,−wxx) = 0 in QT .

It would be interesting to have a proof in this (more difficult) case too. So far we
have not been able to do it.

3. Proof of the main result

We divide the proof into three parts. First we use the regularizing properties of
the u2

x term to prove that for positive time, the solution is Lipschitz continuous and
semiconcave in x (Proposition 3.1). Then we show that the solution is Lipschitz
in t for positive time (Proposition 3.4). This is a regularizing effect that occurs
in a large class of parabolic equations [13]. Finally, we show that the solution is
semiconvex in x (Proposition 3.7), using the previous mentioned result and the
regularizing properties of the max(0,−uxx) term. Taken together, these results
imply Theorem 2.2.
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We start by stating

Proposition 3.1. If u ∈ BUC(QT ) is the viscosity solution of (1.1), then

uxx(t, x) ≤ 2
t

in the sense of distributions, and [u(t, ·)]1 ≤
(
|u|0
t

)1/2

.

In order to prove this result, we need to consider a regularized version of (1.1).
We regularize by mollifying the max function and the initial data, and adding a
viscous term to the equation. Let ρ be a positive, smooth function with mass 1 and
support in {|x| < 1}, and define the mollifier ρε as ρε(x) := 1

ερ(xε ) for x ∈ R and
ε > 0. Furthermore, define

fε(x) =
∫
R

min(0, y)ρε(x− y)dy and uε0(x) =
∫
R
u0(y)ρε(x− y)dy.

Then the regularized problem in consideration can be written

uεt + (uεx)2 = fε(uxx) + εuεxx in QT ,

uε(0, x) = uε0(x) in R.
(3.1)

Note that fε, uε0 are smooth and have bounded derivatives of all orders, and that
fε is nondecreasing and concave. This new equation is a smooth and uniformly
parabolic Hamilton-Jacobi-Bellman equation. The properties of its solutions are
given in the next lemma whose proof will be given in the appendix.

Lemma 3.2. There exists a unique classical solution uε to the initial value problem
(3.1) belonging to C∞(QT ), the space of infinitely differentiable functions.

Proof of Proposition 3.1. Let uε be the solution of the regularized problem (3.1)
provided by Lemma 3.2. We claim that

uεxx ≤
1
2t

in QT .(3.2)

To see this, let w = tuεxx and differentiate twice w.r.t. x in (3.1) (ok by Lemma
3.2) to obtain

wt −
1
t
w +

2
t
w2 + 2uεxwx = (ε + (fε)′)wxx +

1
t
(fε)′′w2

x

≤ (ε + (fε)′)wxx.

The inequality follows since (fε)′′ ≤ 0 by concavity of fε. At an interior maximum
point (t̄, x̄) of w, this inequality reduces to

2(w(t̄, x̄))2 − w(t̄, x̄) ≤ 0,

implying supQ̄T w ≤
1
2 . If the maximum of w is attained at t = 0, then supQ̄T w = 0.

The general case can always be reduced to one of these two cases, hence (3.2) holds.
It can be proved that uε converges uniformly to u as ε → 0 (see e.g. [12] for the
case of u0 ∈ C0,δ(R)). So it immediately follows that u satisfies the bound (3.2) in
the sense of distributions.

Since u ∈ BUC(Q̄T ) satisfies uxx ≤ C0 in the sense of distributions (with C0 =
(2t)−1), a standard interpolation inequality (see e.g. [15, p. 240]) yields

[u(t, ·)]1 ≤ (2|u|0C0)1/2 for all t ∈ (0, T ].

This completes the proof. �
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Remark 3.3. For a similar proof for first-order Hamilton-Jacobi equations, see Lions
([15], Chapter 13).

Let us proceed to

Proposition 3.4. If u ∈ BUC(QT ) is the viscosity solution of (1.1), then |ut(t, ·)|0
≤ C(t) <∞ for any t ∈ (0, T ].

Remark 3.5. It follows from the proof below that C(t) → ∞ as t → 0+, and that
C(t) can be chosen to be a decreasing function.

Proof. The result would follow from Katsoulakis [13] if the equation and initial
data were uniformly Lipschitz continuous in all arguments. This can be achieved
by considering the restriction of u to the interval [ε, T ] for any fixed ε > 0. If v
denotes this function, then v satisfies

vt + (vx)2 + max(0,−vxx) = 0 in (ε, T )× R,
v(ε, x) = u(ε, x) in R.

(3.3)

Obviously v is globally x-Lipschitz and |vx|0 ≤ C/ε1/2 since |ux(t, ·)|0 ≤ C/t1/2 by
Proposition 3.1. Keeping the form (2.1) of equation (1.1) in mind, we may therefore
rewrite equation (3.3) in the following way:

vt + max
α∈{0,1}
|β|≤|vx|0

{−αvxx + 2βvx − β2} = 0 in QT .(3.4)

Here the controls α, β take values in compact sets. So the coefficients in the above
equation are bounded. This again implies that the function

F (p,X) = max
α∈{0,1}
|β|≤|ux|0

{−αX + 2βp− β2}

is Lipschitz continuous in both arguments. Since vt + F (vx, vxx) = 0 in the viscos-
ity sense, and v(ε, ·) is x-Lipschitz continuous, the conditions of Theorem 4.2 (or
Theorem 6.1) in [13] are satisfied. We may therefore conclude that |(t− ε)vt|0 ≤ Cε
for some constant Cε depending on ε, and t > ε. Since ε > 0 was arbitrary, and
u = v for t ∈ [ε, T ], the proof is complete. �
Remark 3.6. Theorem 6.1 in Katsoulakis [13] essentially says that the solution u
of the equation

ut + f(t, x, u,Du,D2u) = 0 in (0, T )× RN ,
u(0, x) = u0(x) in RN ,

satisfies |tut| ≤ C in the sense of distributions if the following conditions hold:

(i) u0 is bounded and Lipschitz continuous.

(ii) f is continuous in all variables.

(iii) f(t, x, r, p,X) ≤ f(t, x, r, p, Y ) for Y ≤ X.
(iv) |f(t, x, r, p,X)− f(t, y, r, p,X)| ≤ C|x− y|(1 + |r|+ |p|).
(v) |f(t, x, r, p,X)− f(t, x, s, q, Y )| ≤ C(|r − s|+ |p− q|+ |X − Y |).

The proof of this result relies on rewriting the equation as an Isaacs equation and
studying the associated stochastic differential game. It turns out that the upper (or
lower) value function of this game satisfies the Isaacs equation in the viscosity sense
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[13, 9]. Moreover this value function has by its definition a stochastic (Feynman-
Kac like) representation formula. The result is then proved by working directly
with this stochastic formula.

The proof of Theorem 2.2 is completed by giving

Proposition 3.7. If u ∈ BUC(QT ) is the viscosity solution of (1.1), then

uxx(t, x) ≥ −C(t) in the sense of distributions,

where C(t) is defined in Proposition 3.4.

Proof. Since u is the viscosity solution of (1.1), it is not difficult to see that the
following inequalities hold in the viscosity sense:

uxx ≥ min(0, uxx) = ut + u2
x ≥ −C(t) in QT ,

where the last inequality follows from Proposition 3.4. From Lemma 1, p. 268
in [1], this inequality implies that u(t, x) + 1

2C(t)x2 is x-convex, which again is
equivalent to the distributional inequality in the proposition. �

Appendix A. Proofs of secondary results

Proof of Proposition 2.1. This result is mainly a consequence of the two lemmas
below. But first we need some notation: For functions φ : QT → R, G[φ] :=
φt + φ2

x + max(0,−φxx) in the viscosity sense, and BUSC denotes the space of
bounded upper semicontinuous functions.

Lemma A.1 (“Strong” comparison principle). Let u,−v ∈ BUSC(QT ) satisfy G[u]
≤ 0, G[v] ≥ 0, u(0, x) ≤ v(0, x), and u(0, x), v(0, x) ∈ BUC(R). Then u ≤ v in
[0, T )× R.

Proof. Define

φ(t, x, y) = α|x− y|2 + ε(|x|2 + |y|2) +
ε

T − t ,

ψ(t, x, y) = u(t, x)− v(t, y)− φ(t, x, y),

σ = sup
t,x,y

ψ(t, x, y)− sup
x,y

ψ(0, x, y)+,

where the suprema are taken over the set [0, T )× R× R. We will derive an upper
bound on σ; so we may assume that σ > 0. By classical arguments there is a
maximum point (t0, x0, y0) ∈ [0, T )× R×R of ψ(t, x, y)− σt. Furthermore, t0 > 0
since otherwise σ ≤ 0. Using the maximum principle for semicontinuous functions
(Theorem 8.3 in [5]), and subtracting the inequalities that follow from the definitions
of viscosity solutions, we obtain

φt(t0, x0, y0) + σ ≤(φy(t0, x0, y0))2 − (φx(t0, x0, y0))2

+ max(0,−Y )−max(0,−X),

where X,Y ∈ R satisfies X ≤ Y + kε for some number k > 0. Simplify this
expression to get

ε

(T − t0)2
+ σ ≤ 2ε(x0 + y0)α(x0 − y0) + ε2(y2

0 − x2
0) + kε ≤ εC

(
1 + α1/2

)
.

The last inequality follows since the inequality ψ(t0, x0, y0) ≥ ψ(t0, 0, 0), and bound-
edness of u and v, yields the bound α|x0 − y0|2 + ε(|x0|2 + |y0|2) ≤ C. Since
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u0 ∈ BUC(R) it is easy to get the estimate supx,y ψ(0, x, y)+ ≤ ω
(
α−1 + ε

)
for

some modulus ω. By the definition of σ, for any (t, x) ∈ [0, T )× R we now have

u(t, x)− v(t, x) ≤ σ + sup
x,y

ψ(0, x, y)+ + 2ε|x|2 +
ε

T − t .

By the above estimates we can conclude the proof by first sending ε to 0, and then
sending α to ∞. �

We give a standard and immediate corollary.

Corollary A.2. Assume u0 ∈ BUC(R), and let u be a viscosity solution of (1.1).
Then u is unique. Furthermore, if h ∈ R and t ∈ [0, T ], then

sup
x∈R
|u(t, x)− u(t, x+ h)| ≤ sup

x∈R
|u(0, x)− u(0, x+ h)|.

We see that the x-regularity of the solution u is the same as the regularity of
the initial function u0. So if u0 belongs to BUC(R) or C0,δ(R) for δ ∈ (0, 1], then
u(t, ·) (if it exists) belongs to BUC(R) or C0,δ(R) for t ∈ (0, T ]. Regularity in t can
be obtained from the comparison principle if one knows the t-regularity at t = 0.
This again can be obtained by a barrier argument. See [11] for the details in the
Hölder continuous case.

Lemma A.3. If u0 ∈ BUC(RN ), then (1.1) has a solution u ∈ BUC(QT ) satisfying
|u|0 ≤ |u0|0.

Outline of proof. Here, we need to consider discontinuous viscosity solutions and
initial values in the viscosity sense, meaning that a subsolution v and a supersolution
v̄ have to satisfy in the viscosity sense:

G[v∗] ≤ 0 and G[v̄∗] ≥ 0 in QT ,

min (G[v∗], v∗ − u∗0) ≤ 0 in {0} × R,
max (G[v̄∗], v̄∗ − u0∗) ≥ 0 in {0} × R.

Here v∗(v∗) denotes the upper (lower) semicontinuous envelopes of the possibly
discontinuous function v.

To continue, we note that the constants |u0|0 and −|u0|0 are smooth sub- and
supersolutions of the initial value problem in the viscosity sense. Then by Perron’s
method [10, 5], the following function is a discontinuous viscosity solution of this
problem:

u(t, x) = sup {w(t, x) : −|u0|0 ≤ w ≤ |u0|0 and G[w∗] ≤ 0 in QT } .

From Lemma 4.7 in [3] it follows that u(0, x) ≤ u∗0(x) and u(0, x) ≥ u0∗(x). Since
u0 = u∗0 = u0∗ (u0 is continuous), this means that u(0, x) = u0(x) ∈ BUC(R). By
the “strong” comparison principle (Lemma A.1) it follows that u∗ ≤ u∗. Since the
opposite inequality is always true, u = u∗ = u∗, implying that u is continuous.
It is then immediate from Corollary A.2 that u is uniformly continuous in x, and
uniform continuity in time follows as explained below Corollary A.2. �

This completes the proof of Proposition 2.1. �

Proof of Lemma 3.2. The result follows from the two lemmas below. In the follow-
ing, let C1,α(QT ) and C2,α(QT ) denote the space of functions f : QT → R with
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finite norms |f |0 + |fx|α and |f |0 + |fx|0 + |fxx|α + |ft|α, respectively. Further-
more, let C1,α

loc (QT ) and C2,α
loc (QT ) be their local versions (the norms being finite on

compact sets).

Lemma A.4. The initial value problem (3.1) has a unique solution uε ∈ C2,β
loc (QT ),

for some β ∈ (0, 1).

Proof. 1. By viscosity methods there exists a unique viscosity solution uε ∈
C0,1(QT ). The proof is similar to the proof of Proposition 2.1.

2. It immediately follows that uε also is the (unique) viscosity solution of the
following truncated equation:

uεt +HR(uεx) = fε(uxx) + εuεxx in QT ,

where HR(t) is t2 for |t| < R and R otherwise for some fixed R > |uεx|0. Alterna-
tively, and in view of the global Lipschitz continuity of fε, we may write

uεt + max
α∈[0,1]

β∈[−R,R]

{−F ε1 (α)uxx − F ε2 (α) + 2βuεx − β2} = εuεxx in QT ,

for some appropriately defined functions F ε1 and F ε2 , bounded on [0, 1]. Now we
have achieved a Hamilton-Jacobi-Bellman equation with bounded coefficients.

3. For the equation in 2, consider the Cauchy-Dirichlet problem on cylinders
for the form [0, T ) × B(x, r) where x ∈ R and r > 0. At the parabolic boundary,
we require that the solution equals the function uε given by 1. We are now in a
situation where the C1,α-theory of [6] applies. All the requirements of Theorem 9.3
of [6] are satisfied for the problem on the cylinder, and this implies the existence
of a unique viscosity solution ū ∈ C1,ᾱ

loc for all ᾱ ∈ (0, 1). Uniqueness implies that
ū = uε on the cylinder, and since x, r was arbitrary, uε ∈ C1,ᾱ

loc (QT ).
4. By 3, uε actually solves the following equation:

ut = fε(uxx) + εuxx + g(t, x) in QT ,

where g(t, x) = −(uεx(t, x))2 is a C0,ᾱ
loc (QT ) function. An argument similar to the

one in 3, using this time Evans-Krylov C2,α-theory (see Theorem 14.10 in [14]),
yields uε ∈ C2,β

loc (QT ) for some β ∈ (0, 1). �

Lemma A.5. If uε ∈ C2,β
loc (QT ) for some β ∈ (0, 1), then uε belongs to C∞(QT ).

Proof. Here we will use difference quotients to obtain higher regularity of the solu-
tion. Let h ∈ R be nonzero, and define

w(t, x) =
uε(t, x+ h)− uε(t, x)

h
.

Simple calculations show that for t > 0, w satisfies

wt +
(∫ 1

0

2
(
suεx(t, x+ h) + (1 − s)uεx(t, x)

)
ds

)
wx

=
(∫ 1

0

fε′
(
suεxx(t, x+ h) + (1 − s)uεxx(t, x)

)
ds

)
wxx + εwxx.

(A.1)

Since fε′ ≥ 0, this is a linear uniformly elliptic equation in w. Furthermore, on each
compact subset of QT , the coefficients are as Hölder continuous as are uεx, u

ε
xx with

bounds independent of h. Linear Schauder theory then implies that w ∈ C2,β
loc (QT )
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with bounds independent of h. This in turn implies that uεxxx ∈ C
0,β
loc (QT ). A

similar but simpler argument, using the linear equation (A.1), shows that

w̄(t, x) =
w(t, x+ k)− w(t, x)

k

belongs to C2,β
loc (QT ) with bounds independent of k (and h), and we can conclude

that uεxxxx ∈ C
0,β
loc (QT ). The regularity of uεtxx is obtained by differentiating the

equation and using the x-regularity of uε.
Continuing the above argument shows that uε belongs to C∞(QT ). �

This completes the proof of Lemma 3.2. �
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