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ABSTRACT. Assuming existence and uniqueness of bounded Lipschitz continu-
ous viscosity solutions to the initial value problem for weakly coupled systems
of Hamilton-Jacobi equations, we establish a linear L*° convergence rate for
a semi-discrete operator splitting. This paper complements our previous work
[3] on the convergence rate of operator splitting for scalar Hamilton-Jacobi
equations with source term.

1. INTRODUCTION

The purpose of this note is to study the error associated with an operator split-
ting procedure for weakly coupled systems for Hamilton-Jacobi equations of the
form

au,-
ot
(1.1)

u(z,0) = up(z) in RV,

+ H;(t, x,u;, Du;) = Gi(t,z,u) in Qr =RN x(0,T), i=1,...,m,

where the Hamiltonian H = (Hy,...,H,,), is such that H; only depends on wu;
and Du; (and z and t). The equations are only coupled through the source term
G = (G1,-.-,Gn)-

We assume that the present problem has a unique bounded, Lipschitz continuous
viscosity solution. We mention that existence of viscosity solutions for systems
of fully nonlinear second order equations of the form Fj(z,t,u, Du;, D*u;) = 0,
i =1,...,n, was shown in [2] if F' is quasi-monotone and degenerate-elliptic. In
our setting we can therefore assume that H — G is quasi-monotone.

Our semi-discrete splitting algorithm consists of alternately solving the “split”
problems

6;: + H;(t,z,u;, Du;) = 0, fori=1,...,m,
ut:G(t7w7u)7 uz(“’h'"a”ﬂl)a

sequentially for a small time step At, using the final data from one equation as

initial data for the other. We refer to Section 2 for a precise description of the

operator splitting. We prove that the operator splitting solution converges linearly

in At (when measured in the L® norm) to the exact viscosity solution of (1.1). This
1
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is a generalization of the results in [3], where convergence of a splitting algorithm
was proved in the scalar case.

Before stating our results, we start by defining our notation and state the neces-
sary preliminaries, for more background we refer the reader to Souganidis [6], see
also [1].

Let ||f|| := ess sup,cy|f(z)|. By BUC(X), Lip(X), and Lipy(X) we denote
the spaces of bounded uniformly continuous functions, Lipschitz functions, and
bounded Lipschitz functions from X to R respectively. Finally, if f € Lip(X) for
some set X C RY | we denote the Lipschitz constant of f by ||Df]|.

Let F € C([0,T] x RY x Rx RY) and ug € BUC(RY) and consider the following
initial value problem

(1.2) u+F(t, z,u,Du) =0 in Qr,
(1.3) u(z,0) = ug(z) in RN,
where ug € BUC(RY).

Definition 1.1 (Viscosity Solution).  1): A function u € C(Qr;R) is a viscos-
ity subsolution of (1.2) if for every ¢ € C*(Qr), whenever u — ¢ attains a
local mazimum at (zg,to) € QT, then

é¢(z0,t0) + F(to, o, u, Dp(x0,10)) < 0.

2): A function u € C(QT;R) is a viscosity supersolution of (1.2) if for every
¢ € C1(Qr), whenever u — ¢ attains a local minimum at (29,ty) € Qr, then

é¢(zo,t0) + F(to, o, u, Dp(x0,10)) > 0.

3): A function u € C(Qr;R) is a viscosity solution of (1.2) if it is both a
viscosity sub- and supersolution of (1.2).

4): A function u € C(QT;R) is viscosity solution of the initial value problem
(1.2) and (1.8) if u is a viscosity solution of (1.2) and u(z,0) = ug(z) in RV .

From this the generalization to viscosity solutions of the system (1.1) is imme-
diate. In order to have existence and uniqueness of (1.3), we need more conditions
on F.

(F1): F € C([0,T] x RV x R x RY) is uniformly continuous on [0,7] x RY x

[-R, R] x By (0, R) for each R > 0, where By(0,R) = {z € RV : |z| < R}.

(F2): supg, |F(t,z,0,0)| < co.

(F3): For each R > 0 there is a yg € R such that F(t,z,r,p) — F(t,x,s,p) >

yr(r—s) forallz e RN, —~R<s<r <R, t€[0,T],and p € RN.

(F4): For each R > 0 there is a constant Cg > 0 such that |F(¢t,z,r,p) —

F(t,y,r,p)] < Cr(l + |p|)|z — y| for all t € [0,T], |r| < R, and z, y and
peRN.

Under these conditions the following theorems hold, see [6]:

Theorem 1.1 (Uniqueness). Let F : [0,T] xRN xRxRN — R satisfy (F1), (F3),
and (F4). Let u,v € BUC(QT) be viscosity solutions of (1.2) with initial data
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ug,vo € BUC(RN), respectively. Let Ry = max(||ul],||v||) and v = yr,. Then for
every t € [0,T1,
llu(-8) = v(, 1) < e luo — wol-

Theorem 1.2 (Existence). Let F : [0,T] x RN x R x RN — R satisfy (F1), (F2),
(F3), and (F}). For every ug € BUC(RN) there is a time T = T(||uo||) > 0 and
function v € BUC(Qt) such that u is the unique viscosity solution of (1.2) and
(1.8). If, moreover, yg in (F3) is independent of R, then (1.2) and (1.8) has a
unique viscosity solution on Qr for every T > 0.

Proposition 1.1. Let F : [0,T] x RY x R x RN — R satisfy (F1), (F2), (F3),
and (F4). If ug € Lipy(RY), and u € BUC(RY) is the unique viscosity solution of
(1.2) and (1.3) in Qr, then u € Lipy(QT).

2. OPERATOR SPLITTING AND MAIN RESULTS

We now give conditions on G and H which in the scalar case (m = 1) will
be sufficient to get existence and uniqueness of a viscosity solution in Lipy(QT).
Moreover these conditions are strong enough to give a linear convergence rate for
the operator splitting.

We assume that H and G satisfy the following conditions:

(H1 — H4): For each i, H; satisfies conditions (F1) — (F4).

(H5): There is a constant L > 0 such that

|Hi(t,$,’f',p) - Hi(t,ib', Sap)l S Lle - Sl

fort€[0,T),z,peRY,r,s €eR andi=1,...,m.
(H6): For each R > 0 there is a constant N& > 0 such that

|Hi(t,1‘,7",p) - Hi(f,x,r,pﬂ < NII%I(]' + |p|) |t - ﬂ

for t,€[0,T)], |r| <R, z,peRY jandi=1,...,m.
(H7): For each R > 0 there is a constant Mg > 0 such that

|Hi(t,:b‘,7“,p) - Hi(t,m,’f', q)| S MR|p - q|

fort € [0,T), |r| < R, z, p, ¢ € RN such that |p|, |[¢f < R,andi=1,...,m.
(G1): G e C([0,T] x RY x R™;R™) is uniformly continuous on [0, 7] x RY x
B,,(0, R) for each R > 0.
(G2): There is a constant C% > 0 such that C¢ = supg,. |G(t,z,0)| < oo.
(G3): For each R > 0 there is a constant C§ > 0 such that
|G(t,$,’l‘) - G(t,y,r)| < Cg|w - y|
fort € [0,T], |r| < R, and z, y € RV.
(G4): There is a constant LY > 0 such that
|G(t,z,r) — G(t,z,s)| < LYr — s

for (t,z) € Q7 and r,s € R™.
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(G5): For each R > 0 there is a constant N§ > 0 such that
|G(t,$,’f’) - G(E,ZU,T’)l < Ng |t - ﬂ
fort,€[0,T), |r| <R, and z € RV.
Note that by the conditions (F2) and (G2) we can assume that H; satisfies H;(t,x,0,0) =
0. If this were not so, we could simply redefine H as H(t,z,u,p) — H(t,z,0,0) and
G as G(t,z,u) — H(t,z,0,0).

We assume that uy € Lipy(RY;R™) and that there exists a unique solution
u € Lipy(Qr,R™) to the initial value problem (1.1).

First we will state an error bound for the splitting procedure when the ordinary
differential equation is approximated by the explicit Euler method. To define the
operator splitting, let

E(t,s) : Lipy(RY;R™) — Lip,(RY; R™)
denote the Euler operator defined by
(2.1) E(t, s)w(z) = w(z) + (t — 5)G(s, 7, w(z))
for 0 < s <t <T and w € Lipy(RY; R™). Furthermore, let
Su(t,s) : Lipy(RY) — Lipy(R")

be the solution operator of the scalar Hamilton-Jacobi equation without source
term

(2.2) ug + H(t,z,u, Du) =0, u(z, s) = w(x),

i.e., we write the viscosity solution of (2.2) as Sg(t, s)w(z).
We let S denote the operator defined by

S(t7 S)w = (SH1 (t7 S)wla ) SHm (t7 S)wm)

for any w = (wy,...,wy) € Lipy(RY;R™). Now we can define our approximate
solutions: Fix At > 0 and set t; = jA¢, set v(z,0) = vo(z) and
(2.3) v(x,t5) = S(tj,t-1)E(t;, tj-1)o(- tj-1) (@),

for 7 > 0. Note that this approximate solution is defined only at discrete ¢-values.
Our first result is that the operator splitting solution, when (2.2) is solved exactly,
converges linearly in At to the viscosity solution of (1.1).

Theorem 2.1. Let u(x,t) be the viscosity solution of (1.1) on the time interval
[0,T], and v(z,t;) be defined by (2.8). There exists a constant K > 0, depending
only on T, ||uol|, ||Duol|, ||voll, ||Dwol|, H, and G, such that for j =1,...,n

llu(,t5) = v(- )|l < K(lluo — voll + At).

We will prove this theorem in the next section.

Our second theorem gives a convergence rate for operator splitting when the
explicit Euler operator F is replaced by the exact solution operator E. More
precisely, let E(t,s) : Lipy(RY;R™) — Lipy(RY;R™) be the solution operator
of the system of ordinary differential equations

(2.4) ug = G(t,x,u) u(z, s) = w(x).
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where w € Lipy(RV; R™). Note that z acts only as a parameter in (2.4), and that
the assumptions on G ensure that F is well defined on the time interval [s, T].
Analogously to (2.3) we define the approximate solution {(z,;)}7_,,

(2.5) o(z,t5) = S(t;,tj-1)E(t;, tj-1)0(, tj-1) (),
for j > 0 and ©(z,t9) = vo. Then we have:

Theorem 2.2. Let u(z,t) be the viscosity solution of (1.1) on the time interval
[0,T] and v(x,t;) be defined by (2.5). Then there exists a constant K > 0, depending
only on T, ||uo||, ||Duoll, ||vell, ||Dwol|, H, and G, such that for j =1,...,n

llu(, ;) — 3, 85)Il < K(lluo — voll + At).

Remark 2.3. Theorems 2.1 and 2.2 are generalizations of Theorems 3.1 and 3.2
in [3].

3. PROOFS OF THEOREMS 2.1 AND 2.2

We will proceed as follows: First we give some estimates we will need later. Then
we introduce an auxiliary approximate solution and prove linear convergence rate
for this solution. This proof involves the scalar version of Theorem 2.1. We proceed
to show that the operator splitting solution converges to this approximate solution
with linear rate. This completes the proof of Theorem 2.1. Finally we give a proof
of Theorem 2.2. This proof is similar to the proof of Theorem 3.2 in [3].

We start by stating the relevant estimates on S. Let w,w € Lipy(RY), 0 < s <
t <T,and Ry = sup, ,,; [|S:(t, s)w]|, then

(3.1) 185t s)w]| < €2 ) jw]),
(3.2) ID{Si(t, s)w}|| < " TEEDE9) (1 D|| 4 (¢ — 8)K(R1)},
(3.3) 1S5(t, s)w — Si(t, )| < e =2 ||lw — ],

where K (R) is a constant depending on R but independent of 4, t, and s. Estimate
(3.3) is a direct consequence of Theorem 1.1. Note that in this case v = L.
Estimates (3.1) and (3.2) correspond to estimates (4.7) and (4.8) in [3].

Regarding the approximation defined by (2.3), v(-,t;), we have the following
estimates:

Lemma 3.1. There is a constant R independent of At such that Juax lo(-, )]l <
<i<n
R. Moreover for every 1 < j <n,
(@): o)l < m B HmE | +1,09),
(b): ID(-,t5)[| < m BT HmETHEEL (| Dyg|| + t5(CF + K (R))}-

Proof. To prove a) and b), we need (3.1), (3.2), and the definition of the operator
E. We only give the proof of a). The proof of b) is similar. By (3.1) we get

(34)  ||Si(ts,t5—1) {Bj,ti—1)o( 1) }]| < €A LB, t—1)v(t-10) ]| -
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We then use the definition of E (2.1) and (G3), (G4) to get
I{E (s, t5-1)o(ot5-1)Yall < loiCt5- )l + A (CF + LG |lo(, t5-1)]) -
Note that [[v(-,tj—1)]| < 37ty [|vi(-,tj—1)||- Now using this and summing over ¢ in

inequality (3.4), we get

D NSitss ti){E (), ti-1)o( ti-1) bl

=1 m
< eLHAt{ (1+ AtmL%) Y i 1)l + mCGAt}
m i=1
(35) < eSS oy ty-0) + mCOe .
=1

The result in a) now follows from successive use of (3.5) and an application of the
inequalities |z| < Y"1, |z;| < mlz| for z € R™. Replacing ¢; by T in a), we see
that the existence of R is assured. O

Proof of Theorem 2.1.
Let u denote the solution of (1.1) and define

(36) é’i(t7w7r) =G; (ta T, ul(wat)a R ui*l(mat)a T Uit ((L', t): s 7um(w> t)) )
fori =1,...,m. Note that the function G; satisfies (G1)-(G5) for all i = 1,...,m.
Using G, we can rewrite (1.1) as a series of “uncoupled” equations

681?' + H;(t,z,u;, Dug) = Gi(t,z,u;), i=1,...,m.

Of course, the viscosity solution of (1.1) u is also the unique viscosity solution of
the system of equations (3.7).

Now we want to do (scalar) operator splitting for each equation in (3.7). To this
end, for any z = (21,... ,Ty) € R™, let @i = (T1,-. ., Tim1, Tit1s-- -5 Tm). NOW
for any w € Lipy(RY ; R™) let E;(t, s)w; be given by

(3.7)

Ei(t, s)w; = w; + (t — 5)Gi (s, z,w;) .

Now we define the following operator splitting solution ¥ = (91, ..., 0m),

(3.8) bi(w,t5) = Si(ty, ti—1) Ei(ty, tj-1)0i(@, tj1),

for j > 1, and ¥;(x, tg) = uo;(x). Note that E; is the Euler operator for the equation
6u,~ =
ot = Gi(ta z, ’U/Z)

Hence by the results of [3]:

Lemma 3.2. Let u(z,t) be the viscosity solution of (1.1) on the time interval [0,T]
and 0(z,t;) be the operator splitting solution (3.8). There exists a constant K' > 0,
depending only on T, ||uol|, ||Duol|, H, and G, such that for j =1,...,n,

llu(-,t;) — (., ;) [l < K'At.
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Using the above lemma, we wish to estimate ||3(-, ;) —v(-, t;)||, and start by using
the definition of the operator splitting solutions (2.3) and (3.8) and the estimate
(3.3). Then

|0i (z,t5) = vi (€, t5)| <|[Si(ts,tj—1) Bilts, tj—1)0i(x,tj_1)
= Siltj, tj-1) (E(tj, tj-1)v(z,tj-1));]
<e" A Bity, t;-1)0i(w, 1) — (B(ty,ti1)v(z, t51),] -
By the Lipschitz continuity of G, we have that
B (tj,tj-1) 0 (2, tj-1) = (B (t,tj-1) v(-,tj-1));]
< (@ — i) (@, 1)) +At‘G,~ (g Tyt 1)y s Um)
-G (n(z,tj—1),... ,'Um(x,tj_l))‘
< (@ = vi) (@, b5 1)| + LA (|(uin — vi) (2,85 1) | + | (T — vi) (2, 51)])
<155 = 03) (@, tj-1)] + LEA(I(win = 362) (@, -1)| + | @i = via) (@, 1-0)]
+ [(%; — Ui)(matjflﬂ)
< (@ — i) (z,t1)| + LYK'A? + LEV2AL [5(z, 5 1) — vz, t5 1))

Summing the resulting inequality over ¢ yields

m

> Jvi(e, ;) — vila, b))
i=1 m
< LAt (mK'LGAt2 + (L+mLOV2At) Y iz, tj-1) — vi(x,tj_1)|>
i=1
< e(LH+m\/§K'LG)tj (Z |U0,i($) _ UO,z’(x)l + mKILthAt>
i=1
Hence Theorem 2.1 holds. O

Proof of Theorem 2.2. We end this section by giving the proof of Theorem 2.2.
Assume for the moment that

(3.9) o (z,t;) — 0 (2,1;)]| < CAt

for all j, where C is a constant depending on G, H, T, ||luol|, ||Duol|, ||vo||, and
[|Dvo|| but not At. Using (3.9) and Theorem 2.1, we find

lu(5t5) =0t < Hlu s t5) —o G )+ [lo (5 85) = o ()l
< K (|luo — woll + At) + CAt.

Setting K = K + C, we conclude that Theorem 2.2 holds. It remains to show (3.9).
Using the same arguments as when estimating the local truncation error for the
Euler method we find that

Z {E@tj1, tj)o(e,t;) — E(tjy1,t5)0(z, )}
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G m ~
<€A {u(@, t) — O, t) hil + CAP,
i=1

where C' = mL%(LYR+C%) +mN§. Here R > max (|| E(t;,)0(-,t;)||, lv(-,£)Il),
R is finite by arguments similar to those used in the proof of Lemma 3.1. Now
using this we find that

Z v (s tjq1) = B(, tj41) Jill
- ZH{S(tj+1,tj)E(tj+1,tj)U('atj)
=t — S(tj+1,tj)E(tj+latj)ﬁ('atj)}i

m
< eHat S IHE®- 41, t)0( ;) — E(tjgn, t)0(,5) i)
i=1

m
(3.10) < B MDA (S (-, 1) = 0 1) }ill + CAR).
i=1
Since that o(z,0) = vo(z), repeated use of inequality (3.10) gives (3.9). O

4. A FULLY DISCRETE SPLITTING METHOD

In this section we present a simple numerical example of the splitting discussed
in this paper. For simplicity we shall consider a system of two equations in one
space dimension

(4.1) ue + H(ug) = f(u,0), v+ G(va) = g(u,0).

When testing this numerically, we must replace the exact solution operator S by
a numerical method. As most numerical methods for Hamilton-Jacobi equations
are have convergence rates of 1/2 with respect to the time step, we use a front
tracking algorithm, which has a linear convergence rate with respect to the time
step. This front tracking algorithm is described in [4] and we shall only give a very
brief account of front tracking here.

Front tracking uses no fixed grid and the solution is approximated by a piecewise
linear function. The discontinuities in the space derivative, the so-called fronts, of
the approximate solution are tracked in time and interactions between these are
resolved. This algorithm works for scalar equations in one space variable of the
form

ug + H(uy) = 0.

For equations in several space dimensions, front tracking can be used as a building
block in a dimensional splitting method, see [5].

For weakly coupled systems of the form (4.1), the approximate solution operator
E depends on both u and v. Therefore, after the action of E, we must add fronts
in the approximation of u at the position of the fronts in v and vice versa. In this
situation we cannot in general find a global bound on the total number of fronts to
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FIGURE 1. u(z,1) and v(z,1)

TABLE 1. At versus 100 x L error.

At 1 1/2 | 1/4 | 1/8 | 1/16|1/32 | 1/64
Error | 32.0 | 27.3 (24.2 169 | 105 | 6.3 3.8

track. In order to avoid this problem we use a fixed grid z; = iAz, for ¢ € Z, and
set

(4.2) S :=moS

where 7 is a linear interpolation to the fixed grid and ST+ is the front tracking algo-
rithm. Unfortunately, this restricts the order of the overall algorithm to O(Az'/?).
Nevertheless, we do not have any inherent relation between Az and At, and we
used Az = At? to check whether we obtain a linear convergence for the range of
At’s we use.

We have tested this on the initial value problem

1
w + 5 (uz)? = 4v(u+1)

1 u(z,0) =v(z,0) =1—|z|, forze[-1,1],
Vt —+ 5 (Uz)2 = u2 + ’U2

and periodic boundary conditions. In figure 1 we show the approximate solution
at t = 1 using At = 1/8. To find a “numerical” convergence rate, we compared
the splitting solution with a reference solution computed by the Engquist-Osher
scheme with Az = 1/2000. Table 1 shows the relative supremum error for different
values of At. These values indicate a numerical convergence rate of roughly 0.53,
i.e., error = O (At%%®), much less than the rate using an exact solution operator
for the homogeneous equation. Nevertheless, we observe that the rate increases if
we measure it for smaller At’s.



10

(1]

JAKOBSEN, KARLSEN, AND RISEBRO

REFERENCES

M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order
partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1-67, 1992.

H Ishii and S Koike. Viscosity solutions for monotone systems of second-order elliptic PDEs.
Comm. PDE., 16(6&7):1095-1128, 1991.

E. R. Jakobsen, K. H. Karlsen and N. H. Risebro. On the convergence rate of operator splitting
for Hamilton-Jacobi equations with source terms. SIAM J. Numer. Anal., 39(2):499-518,
2001.

K. H. Karlsen and N. H. Risebro. A note on front tracking and the equivalence between
viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation
laws. To appear in Nonlinear Anal. (TMA).

K. H. Karlsen and N. H. Risebro. Unconditionally Stable Methods for Hamilton-Jacobi Equa-
tions Available at the URL http://www.math.ntnu.no/conservation.

P. E. Souganidis. Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differential
Equations, 56(3):345-390, 1985.

(Jakobsen) DEPARTMENT OF MATHEMATICAL SCIENCES, NORWEGIAN UNIVERSITY OF SCIENCE

AND TECHNOLOGY, N-7034 TRONDHEIM, NORWAY

E-mail address: erj@math.ntnu.no

(Karlsen) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BERGEN, JOHS. BRUNSGT. 12, N-

5008 BERGEN, NORWAY

E-mail address: kennethk@mi.uib.no

(Risebro) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, P.O. Box 1053, BLINDERN,

N-0316 OsLo, NORWAY

E-mail address: nilshr@math.uio.no



